EI2440 Electrotechnical Design 7.5 credits

Choose semester and course offering
Choose semester and course offering to see information from the correct course syllabus and course offering.
Content and learning outcomes
Course contents
The course begins with a presentation of a number of design problems within the areas electric power engineering, antenna techniques, plasma physics, etc where modelling is an essential tool for design and understanding. The introductory part describes further what a model is and gives an overview of different types of models. Basic modelling techniques are described.
The main part of the course includes 6-8 tasks to be solved in groups. For each task lectures are given that introduces the problem and repeats the theory needed to solve the problem. The task involve that the student formulates the problem and develops a model that can be used to solve it. The model can e.g. be a mathematical description and the equations can be solved analytically or numerically. The model can also be an equivalent circuit which is used for analysis of the problem
The tasks include e.g. electric and magnetic field problems, medical applications, plasmas in space and technical applications.
Intended learning outcomes
The course is a basic course in electrotechnical design including electrical, mechanical and thermal design.
Aim
The overall aim is to
-supply knowledge of how electrical, magnetic, mechanical, and thermal aspects are treated in design of electrotechnical apparatus
-train the ability to by means of models and computer based aids independently solve electrotechnical design problems
After completion of the course the student will be able to
-describe the function of some electrotechnical components and function and properties of involved magnetic, dielectric and conductor materials
-describe and explain how electrical and magnetic fields influence on the function of electrotechnical equipment
-use analytical, dynamic simulation and the finite element method for dimensioning of electrotechnical equipment
-identify functional properties of electrotechnical components by means of analytical methods, dynamic simulation and the finite element method
-modify electrotechnical components by use of analytical methods, dynamic simulation and the finite element method such that properties and performance better meet given demands
-summarise and value a proposed design regarding properties and performance in a technical report
Course disposition
Literature and preparations
Specific prerequisites
150 university credits (hp) in engineering or natural sciences and documented proficiency in English corresponding to English B.
Recommended prerequisites
Basic knowledge in mathematics, physics and electrotechnology corresponding to year 1-3 in the programme CELTE
Equipment
Literature
-Kompendium “Electrotechnical modeling and design”
A-ETS/EEK-0507 . Göran Engdahl et al.
-Power Transformer Design Fundamentals, Åke Carlson, ABB Transformers
-4 Projektbeskrivningar
-Some examination problems with solutions
-2 Laborationsinstruktioner
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- PROA - Projects, 4.0 credits, grading scale: A, B, C, D, E, FX, F
- TEN1 - Examination, 3.5 credits, grading scale: A, B, C, D, E, FX, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.
Further information
Course web
Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.
Course web EI2440Offered by
Main field of study
Education cycle
Add-on studies
EI2430 High Voltage Engineering
EJ2210 Analysis of Electrical Machines
Contact
Supplementary information
In this course, the EECS code of honor applies, see: http://www.kth.se/en/eecs/utbildning/hederskodex.