Skip to main content

FSH3220 Medical Imaging, Signals and Systems 7.5 credits

The goal of the course is to provide an understanding of the field of medical imaging, with focus on x-ray based modalities.

Choose semester and course offering

Choose semester and course offering to see current information and more about the course, such as course syllabus, study period, and application information.

Headings with content from the Course syllabus FSH3220 (Spring 2019–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

The course treats the physical, mathematical and technological aspects of medical imaging systems. Modalities (imaging types) covered include x-ray imaging, computed tomography (CT), gamma camera imaging and single photon emission computed tomography (SPECT), positron emission tomography (PET), ultrasound imaging and magnetic resonance imaging (MRI). Other topics include radiation biology, dosimetry and production of radioisotopes.

Special emphasis is given to the principles of radiation detection and the associated instrumentation, which in many cases were developed within sub-atomic physics. Recently introduced digital detectors, current development and technology trends are an important part of the course.

Numerical methods to quantify the performance of medical imaging systems are presented. The design of medical imaging systems usually involves a number of tradeoffs involving parameters such as contrast, spatial resolution, noise, image acquisition time, size and cost. It is a major goal of the course to provide an understanding of these relations.

Intended learning outcomes

After completion of the course, the student should be able to:

  • Explain the physical and technological principles behind various types of radiation detectors and imaging modalities.
  • List the various components that build up imaging systems of different types and describe their respective functions.
  • Give examples of radionuclides and radiopharmaceuticals used for nuclear imaging, explain how they are produced, as well as motivate their use in their respective applications in terms of their physical, chemical and biological properties.
  • Describe the various contrast mechanisms employed by the different medical imaging modalities.
  • Categorize imaging modalities with respect to parameters such as emission/transmission imaging; anatomical/functional imaging; ionizing/non-ionizing radiation imaging, projection/tomographic imaging, etc.
  • Solve basic numerical problems involving e.g. count rate and image acquisition time, radiation dosimetry, administration of activity and radiographic contrast, Rose model.

To qualify for the highest grades, the student should also demonstrate the ability to:

  • Evaluate detectors and medical imaging systems in terms of quantitative parameters such as contrast, signal-to-noise ratio, modulation transfer function, etc.
  • Identify physical and current technological limitations of medical imaging systems

Course disposition

Lectures and lab work.

Literature and preparations

Specific prerequisites

PhD students.

Recommended prerequisites

No information inserted


No information inserted


Jerry L. Prince, Jonathan M. Links, "Medical Imaging Signals and Systems", 1st Edition (2009) or 2nd Edition (2014)

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

P, F


  • PRO1 - Project, 4.5 credits, grading scale: P, F
  • SEM1 - Seminars, 3.0 credits, grading scale: P, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Written examination and oral presentation.

Other requirements for final grade

Passing grade on written examination and passing grade on oral presentation.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted


Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web FSH3220

Offered by

Main field of study

This course does not belong to any Main field of study.

Education cycle

Third cycle

Add-on studies

No information inserted


Mats Persson (

Postgraduate course

Postgraduate courses at SCI/Physics