Skip to main content
Till KTH:s startsida Till KTH:s startsida

MF2007 Dynamics and Motion Control 9.0 credits

The course gives insight in Mechatronic Control System design. The focus is on modelling, design and prototyping of control systems for mechatronic applications. The course integrates previous knowledge primarily from courses in mechanics, automatic control, electrical and software engineering. After the course you will be able to specify, model, design and partly implement control systems typical for mechatronic products, using professional computer based tools.

Choose semester and course offering

Choose semester and course offering to see current information and more about the course, such as course syllabus, study period, and application information.


For course offering

Autumn 2024 Start 28 Oct 2024 programme students

Application code


Headings with content from the Course syllabus MF2007 (Spring 2018–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

The course includes lectures to provide overview and inspiration, and laboratory work in which the participants work on a project. The project is modularized and parts of it are to be finalized each week of the course. The project work is done in groups of up to three to four participants. The course is concluded by oral presentations per group of the project work and by an individual written exam.

Intended learning outcomes

At the end of this course, the student should be able to:

  • Specify overall performance requirements for a motion control system.
  • Understand the implication, and master the selection, of actuator and sensor components.
  • Derive dynamic models of typical mechatronic applications.
  • Find the correct parameters of dynamic models using experimental methods.
  • Do dynamic analysis of the model in both frequency and time domain.
  • Design model based feedback and model following control, i.e., servo control, both in continuous and discrete time .
  • Do simulations of application and control system models in continuous and discrete time for the purpose of verification, performance analysis and further devlopment
  • Implement and structure the controller software for microprocessor implementation.
  • Understand implementation restrictions due to sensor and actuator limitations and microprocessor resources such as computing speed, fixed vs. floating point arithmetic and memory.
  • Design and use both digital and analogue filters.

Literature and preparations

Specific prerequisites

A Bachelor´s degree in mechanical engineering or the equivalent

Have passed the course MF1016 or gained equivalent experience in electrical engineering.

Have passed the course EL1000/EL1010 or gained equivalent experience in control technology.

Have passed the course DD1320/DD1321 or gained equivalent experience in programming techniques.

Recommended prerequisites

No information inserted


No information inserted


Delas ut vid kursstart.

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F


  • PRO1 - Project, 6.0 credits, grading scale: P, F
  • TEN1 - Written examination, 3.0 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade

Completed hands-in part of the project. Oral presentation of the project (PRO1; 6 cr). Written exam (TEN1; 3cr).

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted


Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

Offered by

Main field of study

Mechanical Engineering

Education cycle

Second cycle

Add-on studies

Mechatronics advanced course.


Lei Feng,