Skip to main content

SE1020 Solid Mechanics, Basic Course 9.0 credits

Choose semester and course offering

Choose semester and course offering to see information from the correct course syllabus and course offering.

Headings with content from the Course syllabus SE1020 (Autumn 2016–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

To acquire knowledge about the basic principles and terminology of solid mechanics, mechanical behaviour of engineering materials, methods to solve important types of solid mechanics problems and ability to apply this knowledge for solution of simple problems of practical importance.

Intended learning outcomes

In design and development of advanced products and process, it is important to assure the functionality.  All products and processes are required to have the correct stiffness and not to break under service.  In this course, you will learn about the mechanical properties of materials and components and how this knowledge is used to design products and processes with respect to stiffness and strength.  Knowledge in strength of materials and solid mechanics design will make product development much more efficient since you will be able to answer question such as ”Does it break?” or ”Will there be too much deformations?” even before the prototypes has been built.

After the course, the participant should be able to

  • determine stresses and deformations in truss structures, frames and composites using models for rods and beams
  • determine stresses and deformations in axisymmetric structures.
  • determine the loading applied on a crack.
  • design the structures mentioned above from knowledge of the applied loading and the mechanical behaviour of the material.
  • determine the applicability of the models above and also understand the order of the approximations included in the models.

Course disposition

No information inserted

Literature and preparations

Specific prerequisites

CMATD: SG1120 Mechanics I
CDEPR: SG1130 Mechanics I
Other program: the equivalent courses

Recommended prerequisites

CDEPR: SF1625 Calculus in One Variable, SF1626 Calculus in Several Variable and MF1061 Introduction to Design and Product Realisation
CMATD: SF1625 Calculus in One Variable, SF1626 Calculus in Several Variable and MH1070 Perspectives on Materials Design
or the equivalent courses


No information inserted


H. Lundh, Grundläggande Hållfasthetslära, KTH, Hållfasthetslära , 2013
Exempelsamling i hållfasthetslära, KTH, Hållfasthetslära, 2014
Handbok och formelsamling i hållfasthetslära, KTH, Hållfasthetslära, 2014

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F


  • DIA1 - Diagnostic Task, 3.0 credits, grading scale: P, F
  • LAB1 - Laboratory Work, - credits, grading scale: P, F
  • TEN1 - Examination, 6.0 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade

Written exam (TEN1; 6 university credits)
Diagnistic task (DIA1; 3 university credits)
Laboratory (LAB1; 0 university credits)

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted


Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web SE1020

Offered by

Main field of study


Education cycle

First cycle

Add-on studies

SE1025 FEM for engineering applications.


Jonas Neumeister (