SF1682 Analytiska och numeriska metoder för differentialekvationer 11,0 hp

Analytical and Numerical Methods for Differential Equations

Analytiska och numeriska metoder för differentialekvationer är en kurs som behandlar differential ekvationer i en variabel (ordinära differential ekvationer) och flera variabler (partiella differentialekvationer). Egenskaper för differentialekvationer studeras och analytiska lösningstekniker lärs ut. Många differentialekvationer kan dock inte lösas analytiskt, och vi studerar också då hur man numeriskt kan approximera lösningen och hur noggranna dessa lösningar blir. 

Visa kursinformation utifrån vald termin och kursomgång:

Kursomgång och genomförande

Ingen kursomgång är vald

Välj termin och kursomgång ovan för att få information från rätt kursplan och kursomgång.

Kursinformation

Innehåll och lärandemål

Kursinnehåll *

  • Ekvationer: Första och högre ordningens ordinära differentialekvationer samt system av dessa, partiella differentialekvationer (t.ex. för värmeledning och vågor).
  • Transformer: Fouriertransform, Laplacetransform och Fourierserier.
  • Analytiska begrepp: Begynnelsevärdesproblem, randvärdesproblem, existens och entydighet av lösningar, autonoma ekvationer, riktningsfält, fasporträtt, lösningskurvor, svängningsfenomen, allmän lösning, partikulär lösning, stationära/kritiska punkter, stabilitet, linjarisering av system, delta-funktion, generaliserade derivator.
  • Numeriska begrepp: Approximation, diskretisering, konvergens, kondition, noggrannhet, lokal linjarisering, stabilitet, styva system, implicita och explicita metoder, adaptivitet.
  • Analytiska Metoder: Integrerande faktor, variabelseparation, variation av parametrar, egenvärdesmetoder, transformer, spektralmetoder.
  • Numeriska Metoder: Newtons metod för icke-linjära system, Euler-framåt, Euler-bakåt, Runge-Kutta metoder, finita differensmetoder, spektralmetoder, snabba Fouriertransformen (FFT), beräkningskomplexitet.

Lärandemål *

Efter genomgången kurs ska studenten kunna

  • använda begrepp, satser och metoder för att hantera frågeställningar inom analytiska och numeriska aspekter av differentialekvationer och transformer som framgår av kursinnehållet.
  • använda analytiska och numeriska metoder för att lösa differentialekvationer som framgår av kursinnehållet, och ha insikt i metoders möjligheter och begränsningar,
  • läsa och tillgodogöra sig matematisk text.

Kursupplägg

Ingen information tillagd

Kurslitteratur och förberedelser

Särskild behörighet *

Slutförd kurs SF1626 Flervariabelanalys.

Rekommenderade förkunskaper

Ingen information tillagd

Utrustning

Ingen information tillagd

Kurslitteratur

Kurslitteraturen anslås på kursens hemsida senast fyra veckor innan kursstart.

Examination och slutförande

Betygsskala *

A, B, C, D, E, FX, F

Examination *

  • INLA - Inlämningsuppgifter, 5,0 hp, betygsskala: P, F
  • TEN1 - Tentamen, 6,0 hp, betygsskala: A, B, C, D, E, FX, F

Examinator beslutar, baserat på rekommendation från KTH:s samordnare för funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Examinator beslutar, i samråd med KTH:s samordnare för funktionsnedsättning (Funka), om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning. Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Anna-Karin Tornberg

Maurice Duits

Ytterligare information

Kurswebb

Ytterligare information om kursen kan hittas på kurswebben via länken nedan. Information på kurswebben kommer framöver flyttas till denna sida.

Kurswebb SF1682

Ges av

SCI/Matematik

Huvudområde *

Teknik

Utbildningsnivå *

Grundnivå

Påbyggnad

Ingen information tillagd

Etiskt förhållningssätt *

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.