SG1109 Mechanics 8.0 credits
Mekanik
Basic mechanics, mainly statics and dynamics of particles.
Education cycle
First cycleMain field of study
Technology
Grading scale
A, B, C, D, E, FX, F
Course offerings
Spring 19 CINEK for programme students

Periods
Spring 19 P3 (4.0 credits), P4 (4.0 credits)

Application code
60422
Start date
15/01/2019
End date
04/06/2019
Language of instruction
Swedish
Campus
KTH Campus
Tutoring time
Daytime
Form of study
Normal

Number of places
No limitation
Schedule
Course responsible
Erik Lindborg <eoli@kth.se>
Teacher
Erik Lindborg <eoli@kth.se>
Target group
CINEK1
Part of programme
Spring 18 CINEK for programme students

Periods
Spring 18 P3 (4.0 credits), P4 (4.0 credits)

Application code
60505
Start date
16/01/2018
End date
04/06/2018
Language of instruction
Swedish
Campus
KTH Campus
Tutoring time
Daytime
Form of study
Normal

Number of places
No limitation
Schedule
Course responsible
Erik Lindborg <eoli@kth.se>
Teacher
Erik Lindborg <eoli@kth.se>
Target group
CINEK1
Part of programme
Intended learning outcomes
The students should be able to, starting with a concrete mechanical problem, make idealizations, motivate and create a mathematical model, solve it using mathematical or numerical methods and finally critically scrutinize the result. Further the students should be able to differentiate between reality and theoretical model and understand the interaction between basic observations, model building, and axioms, postulates, laws and their consequences.Measurable aims: After passing the course the students should be able to: Define the basic concepts and quantities in mechanics and explain how they are related, e.g. velocity, acceleration, mass, time, force, and moment of force. Formulate the laws of motion and derive the connections between them, e.g. Newton’s laws for particles, inertial systems, laws about equilibrium of rigid bodies. Identify and define typical systems of forces and a manifold of more abstract mechanical quantities (center of mass, momentum, angular momentum, resultant force, impulse, angular impulse, work, kinetic and potential energy, conservative and nonconservative forces). Discuss central mechanical phenomena (such as free fall, free damped and undamped harmonic oscillation, forced oscillation, resonance, uniform circular motion, elastic and completely inelastic impact, etc). Prove abstract energy and momentum laws starting from Newton’s laws. Analyze given systems of forces, and simplify them as far as possible. Analyze given motions with suitable choice of coordinate systems (inertial systems). Calculate forces and positions of equilibrium. Starting from Newton’s laws and kinematic and geometric relationships put down mathematical models for different types of particle motions and make calculations of this motion.
Course main content
Statics: Quantities, units, and dimension, vector algebra and vector geometry, geometry of force systems including resultant force, couples etc. Necessary conditions for equilibrium, force and torque in a beam, centre of mass.
Particle dynamics: Kinematics of a particle in Cartesian coordinates, cylindrical (polar) coordinates, natural components. Inertial systems, forces, and Newton’s laws. Work, power, energy, conservative forces, kinetic and potential energy. Motion in central force fields. Linear oscillations, harmonic, damped, and forced.
Systems of particles: The basic principles of linear and angular momentum
Eligibility
Calculus, one variable, and linear algebra with geometry. Calculus, several variables, should be studied in parallel.
Literature
Christer Nyberg; Mekanik grundkurs och Mekanik grundkurs, Problemsamling, båda LIBER förlag, eller Nicholas Apazidis: Mekanik, Studentlitteratur.
Examination
 INL1  Assignments, 1.0, grading scale: P, F
 TEN1  Theory Examination, 4.0, grading scale: A, B, C, D, E, FX, F
 TEN2  Problem Examination, 3.0, grading scale: A, B, C, D, E, FX, F
Offered by
SCI/Mechanics
Examiner
Erik Lindborg <eoli@kth.se>
Addon studies
SG1140
Version
Course syllabus valid from: Autumn 2008.
Examination information valid from: Autumn 2007.