Skip to main content

Before choosing course

Partial differential equations and their applications in physics.

Course offering missing for current semester as well as for previous and coming semesters
* Retrieved from Course syllabus SI1141 (Spring 2011–)

Content and learning outcomes

Course contents

Physical problems that can be modeled by differential equations such as the wave equation, the Laplace- and the Poisson equation. d’Alemberts method, separation of variables, Hilbert spaces, spectral theory of self-adjoint Hilbert space operators, Sturm-Liouville systems. Separation of variables in cartesian, cylindrical and spherical coordinated; special functions like Bessel functions, Legendre polynomials and spherical harmonics. Relation to numerical methods.

Intended learning outcomes

The subject of this course are initial- and boundary value problems for linear partial differential equations which are important in electrodynamics, quantum mechanics etc. The students should learn to formulate specific physics problems through mathematical models of this kind, to master various important analytical methods to solve such models, and to give physical interpretations of the solutions.

Course Disposition

No information inserted

Literature and preparations

Specific prerequisites

Recommended prerequisites: Knowledge of mathematics and vector analysis corresponding to the courses given during the first two years.

Recommended prerequisites

No information inserted


No information inserted


G. Sparr and A. Sparr, Kontinuerliga system, Studentlitteratur, Lund (2000) together with the corresponding "Övningsbok".

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F


  • TENA - Examination, 6,0 hp, betygsskala: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade

Examination in partial differential equations (TEN1; 6 university credits) 

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted


Profile picture Edwin Langmann

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web SI1141

Offered by

SCI/Undergraduate Physics

Main field of study

Physics, Technology

Education cycle

First cycle

Add-on studies

No information inserted


Edwin Langmann (