SI1142 Fysikens matematiska metoder, tilläggskurs 3,0 hp

Mathematical Methods in Physics, Additional Course

Variationskalyl, greensfunktioner och numeriska metoder med tillämpningar inom teoretisk fysik.

  • Utbildningsnivå

    Grundnivå
  • Huvudområde

    Fysik
    Teknik
  • Betygsskala

    A, B, C, D, E, FX, F

Kurstillfällen/kursomgångar

VT19 för programstuderande

VT20 för programstuderande

Lärandemål

Efter genomgången kurs skall en student kunna

  • Använda tensoranalys för att koordinatoberoende kunna ställa upp och analysera fysikaliska samband
  • Använda Lagranges och Hamiltons formalismer inom klassisk mekanik för att dra slutsatser om olika fysikaliska system och hur dessa beter sig
  • Inom Lagranges och Hamiltons formalismer redogöra för hur rörelsekonstanter uppkommer samt tillämpa dessa för att analysera fysikaliska system

Kursens huvudsakliga innehåll

Tensor- och vektoranalys i allmänna rum. Tangent- och dualvektorer. Den metriska tensorn. Lagranges och Hamiltons formuleringar av klassisk mekanik. Noethers sats. Rörelsekonstanter.

Behörighet

Rekommenderade förkunskaper: De två inledande årens kurser i matematik och vektoranalys eller motsvarande kunskaper. Läses parallellt med eller efter SI1140.

Litteratur

G. Sparr and A. Sparr, Kontinuerliga system,  Studentlitteratur, Lund (2000) och tillhörande Övningsbok.

Ytterligare material kommer att kunna nås via kurshemsidan.

Examination

  • TEN2 - Tentamen, 3,0, betygsskala: A, B, C, D, E, FX, F

Krav för slutbetyg

Godkänd sluttentamen.

Ges av

SCI/Fysik grundutbildning

Kontaktperson

Edwin Langmann (langmann@kth.se)

Examinator

Edwin Langmann <langmann@kth.se>

Övrig information

Kursen kan inte ingå i examen tillsammans med SI2215.

Påbyggnad

SI2170 Kvantfysik
SI2380 Kvantmekanik fk
SI2360 Analytisk mekanik och klassisk fältteori
SI2370 Relativitetsteori

Versionsinformation

Kursplan gäller från och med VT2016.
Examinationsinformation gäller från och med VT2011.