Coupled nonlinear differential equations. Phase space, trajectories. Iterative maps. Stability analysis of singular points. Limit cycles, strange attractors. Poincaré-Bendixson theorem. Bifurcations. Chaos. Lyapunov exponents. Feigenbaum renormalization. Fractals, fractal dimensions. Lorenz equations, logistic map, Hénon map, Rössler system. Applications to Physics, Biology, Chemistry, Engineering: Lasers. Superconducting Josephson junctions. Population dynamics. Chemical kinetics. Electronic oscillators. Nonlinear mechanical systems.
SI2540 Complex Systems 7.5 credits
This course will be discontinued.
Last planned examination: Spring 2025
Decision to discontinue this course:
No information insertedComplex systems, a.k.a. dynamical systems, refer to mathematical models describing the time evolution of systems by means of equations of motion and initial values. It is the solutions rather than the systems, or the models of the systems, that display complex features. Examples of such features are various ordered processes and structures, such as nonlinear oscillations and waves, as well as disordered chaotic processes and fractal structures. The models are formulated in terms of coupled nonlinear differential equations or, in the discrete case, as iterated maps. Nonlinearity is essential and key concepts are bifurcations, sensitive dependence on initial values, attractors and chaos. There are applications to physics, biology, chemistry, engineering and other areas. The course deals with analytical and numerical methods for the analysis of nonlinear models based on a small number of independent variables.
Information per course offering
Course offerings are missing for current or upcoming semesters.
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus SI2540 (Spring 2022–)Content and learning outcomes
Course contents
Intended learning outcomes
Upon completion of the course, you will
- be familiar with analytical and numerical methods for the analysis of coupled nonlinear differential equations
- be able to interpret and characterize different solution types
- know, and be able to develop, applications to physics, biology, chemistry, engineering and other areas
Literature and preparations
Specific prerequisites
English B / English 6
Recommended prerequisites
Basic course in differential equations.
Equipment
Literature
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- INL1 - Assigment, 7.5 credits, grading scale: A, B, C, D, E, FX, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
Other requirements for final grade
Home assignments and an oral exam (INL1 + TEN1; 7,5 hp).
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.