II2302 Sensor-baserade system 7,5 hp

Sensor Based Systems

  • Utbildningsnivå

    Avancerad nivå
  • Huvudområde

  • Betygsskala

    A, B, C, D, E, FX, F


VT19 för programstuderande

VT20 för programstuderande


This course is an introduction to sensor enabled systems, with an emphasis on embedded platforms.  Areas covered include broad sensor technologies, the physical properties they measure, and how they are used in embedded designs.  Data fusion methods and algorithms, especially for heterogeneous sensor networks and systems are discussed, and how these methods enable new applications and services, especially those in context awareness.  The roles of mediated communications, connectivity and network topology choices in sensor networks are also covered.  Technologies and methods discussed in the class will be tied to emerging application areas in several areas such as machine intelligence, security, entertainment, and business processes. •                   To know how to select sensors based on physical measurement requirements and application specifications.•                   To know how to deploy data fusion principles to combine sensor data to satisfy a measurement goal.•                   To know how security can be protected with respect to sensors and the data they generate.  Also to know the limitation of security methods used with respect to robustness, computation requirements and cost.•                   To know how to design a network topology for communicating sensor nodes that satisfies stated requirements of robustness, security, performance and cost.•                   To be able to use sensor based architectures to design advanced applications that use context awareness, personalization, augmented and virtual spaces.

Kursens huvudsakliga innehåll

•                   How sensors optimize ICT from a user, business and technical perspective•                   Personalization, dynamic Persona, logistics reduction, context measurement.•                   Physics of sensors.  Signals, measurement techniques, noise and algorithms.•                   Higher level sensing, biometrics, location•                   Multiple sensor arrays, homogeneous and heterogeneous•                   Data fusion models and algorithms•                   Higher level fusion, aggregation•                   Mediated communication, sensor network topologies•                   Sensors and data security•                   Advanced applications, augmented reality and virtual spaces


Rekommenderade förkunskaper

Embeddes systems Signal theory

Previous coursework in areas of electronic circuits, logic design, embedded system design and programming.



  • PRO1 - Projekt, 4,5, betygsskala: A, B, C, D, E, FX, F
  • TEN1 - Tentamen, 3,0, betygsskala: A, B, C, D, E, FX, F

Passed written exam TEN1: 3 hp, Grade A-FProject PRO1: 4,5 hp, Grade A-FThe grade for the course is calculated as a weighted average where the grade E-A are given a value of 1-5. Roundhalfs up.

Ges av

EECS/Elektronik och inbyggda system


Mark Smith


Mark T Smith <msmith@kth.se>

Övrig information

Kursen ges på engelska 

Kursen utvärderas och utvecklas i enlighet med KTH:s policy för Kursanalys (se KTH-Handbok 2, Flik 14.1) 


Kursplan gäller från och med VT2019.
Examinationsinformation gäller från och med VT2019.