Skip to main content
Till KTH:s startsida

II2302 Sensor Based Systems 7.5 credits

Information per course offering

Termin

Information for Spring 2024 Start 16 Jan 2024 programme students

Course location

KTH Kista

Duration
16 Jan 2024 - 15 Mar 2024
Periods
P3 (7.5 hp)
Pace of study

50%

Application code

60141

Form of study

Normal Daytime

Language of instruction

English

Course memo
Course memo is not published
Number of places

25 - 100

Target group

Open to all programmes as long as it can be included in your programme.

Planned modular schedule
[object Object]

Contact

Examiner
No information inserted
Course coordinator
No information inserted
Teachers
No information inserted

Course syllabus as PDF

Please note: all information from the Course syllabus is available on this page in an accessible format.

Course syllabus II2302 (Autumn 2023–)
Headings with content from the Course syllabus II2302 (Autumn 2023–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

•                   How sensors optimize ICT from a user, business and technical perspective•                   Personalization, dynamic Persona, logistics reduction, context measurement.•                   Physics of sensors.  Signals, measurement techniques, noise and algorithms.•                   Higher level sensing, biometrics, location•                   Multiple sensor arrays, homogeneous and heterogeneous•                   Data fusion models and algorithms•                   Higher level fusion, aggregation•                   Mediated communication, sensor network topologies•                   Sensors and data security•                   Advanced applications, augmented reality and virtual spaces

Intended learning outcomes

This course is an introduction to sensor enabled systems, with an emphasis on embedded platforms.  Areas covered include broad sensor technologies, the physical properties they measure, and how they are used in embedded designs.  Data fusion methods and algorithms, especially for heterogeneous sensor networks and systems are discussed, and how these methods enable new applications and services, especially those in context awareness.  The roles of mediated communications, connectivity and network topology choices in sensor networks are also covered.  Technologies and methods discussed in the class will be tied to emerging application areas in several areas such as machine intelligence, security, entertainment, and business processes. •                   To know how to select sensors based on physical measurement requirements and application specifications.•                   To know how to deploy data fusion principles to combine sensor data to satisfy a measurement goal.•                   To know how security can be protected with respect to sensors and the data they generate.  Also to know the limitation of security methods used with respect to robustness, computation requirements and cost.•                   To know how to design a network topology for communicating sensor nodes that satisfies stated requirements of robustness, security, performance and cost.•                   To be able to use sensor based architectures to design advanced applications that use context awareness, personalization, augmented and virtual spaces.

Literature and preparations

Specific prerequisites

No information inserted

Recommended prerequisites

Embeddes systems Signal theory

Previous coursework in areas of electronic circuits, logic design, embedded system design and programming.

Equipment

No information inserted

Literature

No information inserted

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F

Examination

  • PRO1 - Project, 4.5 credits, grading scale: A, B, C, D, E, FX, F
  • TEN1 - Examination, 3.0 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Passed written exam TEN1: 3 hp, Grade A-FProject PRO1: 4,5 hp, Grade A-FThe grade for the course is calculated as a weighted average where the grade E-A are given a value of 1-5. Roundhalfs up.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

Offered by

Main field of study

Electrical Engineering

Education cycle

Second cycle

Add-on studies

No information inserted