Conservative and non-conservative systems, forced oscillations of systems, continuous systems and travelling waves. Perturbation methods – such as straightforward expansion, Lindstedt-Poincaré method, method of multiple scales, method of harmonic balance, method of averaging – and basic numerical methods.
SD2180 Non-linear Acoustics 6.0 credits

The course covers the fundamentals of non-linear acoustics.
Information per course offering
Choose semester and course offering to see current information and more about the course, such as course syllabus, study period, and application information.
Information for Autumn 2025 Start 25 Aug 2025 programme students
- Course location
KTH Campus
- Duration
- 25 Aug 2025 - 24 Oct 2025
- Periods
- P1 (6.0 hp)
- Pace of study
50%
- Application code
50094
- Form of study
Normal Daytime
- Language of instruction
English
- Course memo
- Course memo is not published
- Number of places
Places are not limited
- Target group
Open for:
All Master of Science in Engineering from year 3 and all Master programmes as long as it can be included in your programme.
- Planned modular schedule
- [object Object]
- Schedule
- Schedule is not published
Contact
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus SD2180 (Spring 2022–)Content and learning outcomes
Course contents
Intended learning outcomes
After the course, the participant shall be able to:
- Apply perturbation methods to new situations:
- Predict the response of a novel, non-linear system – approximated by a conservative, finite degree-of-system – using a perturbation method.
- Predict the response of a novel, non-linear system – approximated by a non-conservative, finite degree-of-system – using a perturbation method.
- Calculate all the resonance frequencies of a forced, novel, non-linear system – approximated by a non-conservative, single degree-of-system – using a perturbation method.
- Demonstrate a correct use of a perturbation method in the prediction of the standing wave response of a novel, non-linear continuous system – such as string, beam, plate or shell.
- Predict the travelling wave response of a novel, non-linear continuous system using a perturbation method. - Analyze non-linear acoustic phenomena:
- Identify the non-linear phenomena for finite degree-of-freedom systems.
- Point out the reasons for the non-linear phenomena for finite degree-of-freedom systems.
- Identify the non-linear phenomena for continuous systems.
- Point out the reasons for the non-linear phenomena for continuous systems. - Judge the value of applied perturbation methods for a given application:
- Write a short exposition evaluating the relative merits of the applied perturbation methods.
- Compare the response results predicted by a perturbation method with those of a basic numerical method.
- Explain the reasons for a good match between results obtained by a perturbation method and those of a basic numerical method.
- Explain the reasons for any mismatch between results obtained by a perturbation method and those of a basic numerical method.
Also after the course, for higher grades (A-C), the participant shall be able to:
- Display a scientific attitude towards non-linear problems:
- Demonstrate curiosity in identifying non-linear problems.
- Seek natural causes of non-linear phenomena.
- Demonstrate open-mindedness when seeking solutions.
- Suspend judgments until all evidence is available.
- Show objectivity in analyzing evidence and drawing conclusions.
- Show willingness to revise conclusions as new evidence becomes available.
Literature and preparations
Specific prerequisites
Basic courses in mathematics, mechanics.
English B / English 6
Literature
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- TEN1 - Examination, 6.0 credits, grading scale: A, B, C, D, E, FX, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
Other requirements for final grade
Written home assignments (TEN1; 6 university credits).
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.