Skip to main content
Till KTH:s startsida

SF1861 Optimization 6.0 credits

Information per course offering

Choose semester and course offering to see current information and more about the course, such as course syllabus, study period, and application information.

Termin

Information for Spring 2025 Start 17 Mar 2025 programme students

Course location

KTH Campus

Duration
17 Mar 2025 - 2 Jun 2025
Periods
P4 (6.0 hp)
Pace of study

33%

Application code

60179

Form of study

Normal Daytime

Language of instruction

English

Course memo
Course memo is not published
Number of places

Places are not limited

Target group
No information inserted
Planned modular schedule
[object Object]
Schedule
Schedule is not published
Part of programme

Contact

Examiner
No information inserted
Course coordinator
No information inserted
Teachers
No information inserted
Contact

Per Enqvist (penqvist@kth.se)

Course syllabus as PDF

Please note: all information from the Course syllabus is available on this page in an accessible format.

Course syllabus SF1861 (Autumn 2019–)
Headings with content from the Course syllabus SF1861 (Autumn 2019–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

  • Examples of applications of optimization and modelling training.
  • Basic concepts and theory for optimization, in particular theory for convex problems.
  • Linear algebra in Rn, in particular bases for the four fundamental subspaces corresponding to a given matrix, and LDLT-factorization of a symmetric positive semidefinite matrix.
  • Linear optimization, including duality theory.
  • Optimization of flows in networks.
  • Quadratic optimization with linear equality constraints.
  • Linear least squares problems, in particular minimum norm solutions.
  • Unconstrained nonlinear optimization, in particular nonlinear least squares problems.
  • Optimality conditions for constrained nonlinear optimization, in particular for convex problems.
  • Lagrangian relaxation.

Intended learning outcomes

After completing the course students should for a passing grade be able to

  • Apply basic theory, concepts and methods, within the parts of optimization theory described by the course content, to solve problems
  • Formulate simplified application problems as optimization problems and solve using software.
  • Read and understand mathematical texts about for example,  linear algebra, calculus and optimization and their applications, communicate mathematical reasoning and calculations in this area, orally and in writing in such a way that they are easy to follow.

For higher grades the student should also be able to

  • Explain, combine and analyze basic theory, concepts and methods within the parts of optimization theory described by the course content.

Literature and preparations

Specific prerequisites

Completed course in Linear Algebra, SF1624, SF1672 or SF1675.
Completed course in Multivariable Calculus, SF1626 or SF1674.

Completed course SF1668  Mathematical and numerical methods I or a course in Numerical methods corresponding to SF1668, SF1511, SF1519, SF1546 or SF1547. 

Recommended prerequisites

No information inserted

Equipment

No information inserted

Literature

The literature is published on the course webpage no later than four weeks before the course starts.

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F

Examination

  • HEM1 - Assignments, 1.5 credits, grading scale: P, F
  • TEN1 - Examination, 4.5 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

The examiner decides, in consultation with KTHs Coordinator of students with disabilities (Funka), about any customized examination for students with documented,lastingdisability. The examiner may allow another form of examination for reexamination of individual students.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

Offered by

Main field of study

Mathematics, Technology

Education cycle

First cycle

Add-on studies

SF2812 Applied Linear Optimization, SF2822 Applied Nonlinear Optimization

Contact

Per Enqvist (penqvist@kth.se)