Hoppa till huvudinnehållet

SF2955 Datorintensiva metoder inom matematisk statistik 7,5 hp

Kursens övergripande mål är att ge grundläggande kunskap, förståelse och problem-lösningsfärdighet inom områden av statistisk inferens där ytterst få och enkla antaganden behöver göras om hur mätdata har genererats, samt att använda datorer för att utföra de beräkningsintensiva kalkyler som ofta krävs.

Välj termin och kursomgång

Välj termin och kursomgång för att se information från rätt kursplan och kursomgång.

Rubriker med innehåll från kursplan SF2955 (HT 2020–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

Denna kurs ger en introduktion till modern Monte Carlo-simulering och dess tillämpningar inom matematisk statistik.

Sekventiella Monte Carlo-metoder (SMC), även kallade partikelfilter, är en klass samplingmetoder som simulerar rekursivt från sekvenser av sannolikhetsfördelningar. Dessa metoder tillämpas inom en mängd vetenskapliga fält, såsom signalbehandling, robotik och finansiell matematik.

Markovkedjemetoder (MCMC) är simuleringstekniker som kan generera Monte Carlo-stickprov från komplicerade högdimensionella fördelningar med hjälp av sinnrikt utformade Markovkedjor. MCMC tillämpas framgångsrikt inom Bayesianska statistiska metoder – vilka gör det möjligt att inkludera a priori-kunskap i inferensanalysen – men även i områden såsom optimering, statistisk mekanik och maskininlärning.

Lärandemål

Efter slutfördkurs skastudenten kunna:

  • formulera och tillämpa Monte Carlo-simuleringstekniker,
  • tillämpa Monte Carlo-simulering på frekventistisk och Bayesiansk statistik,
  • utforma och implementera en SMC-algoritm för simulering från en given sekvens av sannolikhetsfördelningar, och
  • utformaoch implementera en MCMC-algoritm för simulering från posteriorifördelningen för en komplex Bayesiansk modell och analysera dess utdata.

Kursupplägg

Ingen information tillagd

Kurslitteratur och förberedelser

Särskild behörighet

  • Slutförd grundkurs i matematisk statistik (SF1918, SF1922 eller motsvarande kurs).
  • Slutförd grundkurs i numerisk analys(SF1544, SF1545 eller motsvarande)

Rekommenderade förkunskaper

Ingen information tillagd

Utrustning

Ingen information tillagd

Kurslitteratur

Englund, Gunnar. Datorintensiva metoder i matematisk statistik. Kompendium från KTH.

Kursmaterial från institutionen för matematik.

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

A, B, C, D, E, FX, F

Examination

  • OVNA - Inlämningsuppgifter, 3,0 hp, betygsskala: P, F
  • TENA - Tentamen, 4,5 hp, betygsskala: A, B, C, D, E, FX, F
Examinator beslutar, baserat på rekommendation från KTH:s samordnare för funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kurswebb

Ytterligare information om kursen kan hittas på kurswebben via länken nedan. Information på kurswebben kommer framöver flyttas till denna sida.

Kurswebb SF2955

Ges av

Huvudområde

Matematik

Utbildningsnivå

Avancerad nivå

Påbyggnad

Ingen information tillagd

Kontaktperson

Jimmy Olsson (jimmyol@kth.se)

Övrig information

Ges endast vartannat år.