Hoppa till huvudinnehållet
Till KTH:s startsida Till KTH:s startsida

Publikationer av Lars Berglund

Refereegranskade

Artiklar

[2]
G. G. Mastantuoni et al., "Rationally designed conductive wood with mechanoresponsive electrical resistance," Composites. Part A, Applied science and manufacturing, vol. 178, 2024.
[5]
P. Samanta et al., "Coloration and Fire Retardancy of Transparent Wood Composites by Metal Ions," ACS Applied Materials and Interfaces, vol. 15, no. 50, s. 58850-58860, 2023.
[7]
N. Arcieri et al., "Crack growth study of wood and transparent wood-polymer composite laminates by in-situ testing in weak TR-direction," Composites. Part A, Applied science and manufacturing, vol. 173, 2023.
[8]
E. Mavrona et al., "Efficiency assessment of wood and cellulose-based optical elements for terahertz waves," Optical Materials Express, vol. 13, no. 1, s. 92-103, 2023.
[9]
Van C. Tran et al., "Electrical current modulation in wood electrochemical transistor," Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 118, 2023.
[10]
M. V. Tavares da Costa, L. Li och L. Berglund, "Fracture properties of thin brittle MTM clay coating on ductile HEC polymer substrate," Materials & design, vol. 230, 2023.
[12]
G. G. Mastantuoni et al., "High-Strength and UV-Shielding Transparent Thin Films from Hot-Pressed Sulfonated Wood," ACS Sustainable Chemistry and Engineering, 2023.
[13]
G. G. Mastantuoni et al., "In Situ Lignin Sulfonation for Highly Conductive Wood/Polypyrrole Porous Composites," Advanced Materials Interfaces, vol. 10, no. 1, 2023.
[15]
M. V. Tavares da Costa och L. Berglund, "Modeling of modulus and strength in void-containing clay platelet/cellulose nanocomposites by unit cell approach," Nanocomposites, vol. 9, no. 1, s. 138-147, 2023.
[19]
J. Garemark et al., "Strong, Shape-Memory Aerogel via Wood Cell Wall Nanoscale Reassembly," ACS Nano, vol. 17, no. 5, s. 4775-4789, 2023.
[21]
A. Srikanth Sridhar, L. Berglund och J. Wohlert, "Wetting of native and acetylated cellulose by water and organic liquids from atomistic simulations," Cellulose, vol. 30, no. 13, s. 8089-8106, 2023.
[22]
S. Wang et al., "Wood xerogel for fabrication of high-performance transparent wood," Nature Communications, vol. 14, no. 1, 2023.
[23]
D. C. R. Forsberg et al., "A method for chemical and physical modification of oriented pulp fibre sheets," Cellulose, vol. 29, no. 15, s. 8371-8386, 2022.
[25]
M. Wohlert et al., "Cellulose and the role of hydrogen bonds : not in charge of everything," Cellulose, vol. 29, no. 1, s. 1-23, 2022.
[26]
A. Samanta et al., "Charge Regulated Diffusion of Silica Nanoparticles into Wood for Flame Retardant Transparent Wood," Advanced Sustainable Systems, vol. 6, no. 4, s. 2100354-2100354, 2022.
[27]
S. J. Eichhorn et al., "Current international research into cellulose as a functional nanomaterial for advanced applications," Journal of Materials Science, vol. 57, no. 10, s. 5697-5767, 2022.
[28]
P. Samanta et al., "Fire-retardant and transparent wood biocomposite based on commercial thermoset," Composites. Part A, Applied science and manufacturing, vol. 156, 2022.
[32]
H. Mianehrow, L. Berglund och J. Wohlert, "Interface effects from moisture in nanocomposites of 2D graphene oxide in cellulose nanofiber (CNF) matrix – A molecular dynamics study," Journal of Materials Chemistry A, vol. 10, no. 4, s. 2122-2132, 2022.
[33]
J. Huang et al., "Large-Area Transparent “Quantum Dot Glass” for Building-Integrated Photovoltaics," ACS Photonics, vol. 9, no. 7, s. 2499-2509, 2022.
[34]
E. Jungstedt et al., "Mechanical behavior of all-lignocellulose composites—Comparing micro- and nanoscale fibers using strain field data and FEM updating," Composites. Part A, Applied science and manufacturing, vol. 161, s. 107095-107095, 2022.
[35]
H. Mianehrow et al., "Moisture effects on mechanical behavior of CNF-RGO nanocomposites showing electrical conductivity," Composites. Part A, Applied science and manufacturing, vol. 163, 2022.
[36]
J. Garemark et al., "Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation," ACS Applied Materials and Interfaces, vol. 14, no. 21, s. 24697-24707, 2022.
[39]
F. Ram et al., "Scalable, efficient piezoelectric wood nanogenerators enabled by wood/ ZnO nanocomposites," Composites. Part A, Applied science and manufacturing, vol. 160, 2022.
[40]
S. Wang et al., "Strong, transparent, and thermochromic composite hydrogel from wood derived highly mesoporous cellulose network and PNIPAM," Composites. Part A, Applied science and manufacturing, vol. 154, s. 106757, 2022.
[41]
M. Titirici et al., "The sustainable materials roadmap," Journal of Physics : Materials, vol. 5, no. 3, s. 032001, 2022.
[42]
E. Jungstedt, S. Östlund och L. Berglund, "Transverse fracture toughness of transparent wood biocomposites by FEM updating with cohesive zone fracture modeling," Composites Science And Technology, vol. 225, s. 109492, 2022.
[43]
Van C. Tran et al., "Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications," Journal of Materials Chemistry A, vol. 10, no. 29, s. 15677-15688, 2022.
[44]
P. Chen et al., "Water as an Intrinsic Structural Element in Cellulose Fibril Aggregates," Journal of Physical Chemistry Letters, vol. 13, no. 24, s. 5424-5430, 2022.
[46]
E. Oliaei et al., "Eco-Friendly High-Strength Composites Based on Hot-Pressed Lignocellulose Microfibrils or Fibers," ACS Sustainable Chemistry and Engineering, vol. 9, no. 4, s. 1899-1910, 2021.
[47]
M. Höglund et al., "Facile Processing of Transparent Wood Nanocomposites with Structural Color from Plasmonic Nanoparticles," Chemistry of Materials, vol. 33, no. 10, s. 3736-3745, 2021.
[48]
F. Carosio et al., "Green and Fire Resistant Nanocellulose/Hemicellulose/Clay Foams," Advanced Materials Interfaces, vol. 8, no. 18, 2021.
[52]
M. Lawoko, L. Berglund och M. Johansson, "Lignin as a Renewable Substrate for Polymers : From Molecular Understanding and Isolation to Targeted Applications," ACS Sustainable Chemistry and Engineering, vol. 9, no. 16, s. 5481-5485, 2021.
[54]
Y. Gao et al., "Olive Stone Delignification Toward Efficient Adsorption of Metal Ions," Frontiers in Materials, vol. 8, 2021.
[55]
[56]
A. Samanta et al., "Reversible dual-stimuli responsive chromic transparent wood bio-composites for smart window applications," ACS Applied Materials and Interfaces, vol. 13, s. 3270-3277, 2021.
[57]
P. -. Westin et al., "Single step PAA delignification of wood chips for high-performance holocellulose fibers," Cellulose, vol. 28, no. 3, s. 1873-1880, 2021.
[58]
[59]
D. Xu et al., "Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets," ACS Applied Materials and Interfaces, vol. 13, no. 3, s. 4463-4472, 2021.
[60]
C. Montanari, P. Olsen och L. Berglund, "Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization," Frontiers in Chemistry, vol. 9, 2021.
[61]
E. Oliaei, T. Lindström och L. Berglund, "Sustainable development of hot-pressed all-lignocellulose composites—comparing wood fibers and nanofibers," Polymers, vol. 13, no. 16, 2021.
[62]
C. Chen et al., "Wood Nanomaterials and Nanotechnologies," Advanced Materials, vol. 33, no. 28, 2021.
[63]
A. Walther et al., "Best Practice for Reporting Wet Mechanical Properties of Nanocellulose-Based Materials," Biomacromolecules, vol. 21, no. 6, s. 2536-2540, 2020.
[66]
Q. Wu, N. E. Mushi och L. Berglund, "High-Strength Nanostructured Films Based on Well-Preserved α-Chitin Nanofibrils Disintegrated from Insect Cuticles," Biomacromolecules, vol. 21, no. 2, s. 604-612, 2020.
[68]
C. Montanari, P. Olsén och L. Berglund, "Interface tailoring by a versatile functionalization platform for nanostructured wood biocomposites," Green Chemistry, vol. 22, no. 22, s. 8012-8023, 2020.
[69]
C. Gioia et al., "Lignin-Based Epoxy Resins : Unravelling the Relationship between Structure and Material Properties," Biomacromolecules, vol. 21, no. 5, s. 1920-1928, 2020.
[70]
E. Jungstedt et al., "Mechanical properties of transparent high strength biocomposites from delignified wood veneer," Composites. Part A, Applied science and manufacturing, 2020.
[72]
P. Olsen, N. Herrera och L. Berglund, "Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling," Biomacromolecules, vol. 21, no. 2, s. 597-603, 2020.
[73]
X. Yang och L. Berglund, "Recycling without Fiber Degradation-Strong Paper Structures for 3D Forming Based on Nanostructurally Tailored Wood Holocellulose Fibers," ACS Sustainable Chemistry and Engineering, vol. 8, no. 2, s. 1146-1154, 2020.
[74]
H. Chen et al., "Refractive index of delignified wood for transparent biocomposites," RSC Advances, vol. 10, s. 40719-40724, 2020.
[76]
H. Mianehrow et al., "Strong reinforcement effects in 2D cellulose nanofibril-graphene oxide (CNF-GO) nanocomposites due to GO-induced CNF ordering," Journal of Materials Chemistry A, vol. 8, no. 34, s. 17608-17620, 2020.
[77]
N. Herrera Vargas, P. Olsen och L. Berglund, "Strongly Improved Mechanical Properties of Thermoplastic Biocomposites by PCL Grafting inside Holocellulose Wood Fibers," ACS Sustainable Chemistry and Engineering, vol. 8, no. 32, s. 11977-11985, 2020.
[79]
C. Chen et al., "Structure-property-function relationships of natural and engineered wood," Nature Reviews Materials, vol. 5, no. 9, s. 642-666, 2020.
[80]
[83]
P. Olsén, M. Herrera och L. A. Berglund, "Toward Biocomposites Recycling : Localized Interphase Degradation in PCL-Cellulose Biocomposites and its Mitigation," Biomacromolecules, vol. 21, no. 5, s. 1795-1801, 2020.
[84]
A. Mendoza-Galván et al., "Transmission mueller-matrix characterization of transparent ramie films," Journal of Vacuum Science and Technology B : Nanotechnology and Microelectronics, vol. 38, no. 1, 2020.
[85]
M. Höglund et al., "Transparent Wood Biocomposites by Fast UV-Curing for Reduced Light-Scattering through Wood/Thiol-ene Interface Design," ACS Applied Materials and Interfaces, vol. 12, no. 41, s. 46914-46922, 2020.
[86]
A. Hajian et al., "Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns," Advanced Electronic Materials, vol. 5, no. 3, 2019.
[88]
E. Vasileva et al., "Effect of transparent wood on the polarization degree of light," Optics Letters, vol. 44, no. 12, s. 2962-2965, 2019.
[89]
Q. Wu et al., "High strength nanostructured films based on well-preserved beta-chitin nanofibrils," Nanoscale, vol. 11, no. 22, s. 11001-11011, 2019.
[90]
X. Yang, F. Berthold och L. Berglund, "High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose," ACS Applied Materials and Interfaces, vol. 11, no. 10, s. 10310-10319, 2019.
[94]
S. Andrieux et al., "Monodisperse highly ordered chitosan/cellulose nanocomposite foams," Composites. Part A, Applied science and manufacturing, vol. 125, 2019.
[95]
S. Roig-Sanchez et al., "Nanocellulose films with multiple functional nanoparticles in confined spatial distribution," Nanoscale Horizons, vol. 4, no. 3, s. 634-641, 2019.
[99]
Y. Li et al., "Optically Transparent Wood Substrate for Perovskite Solar Cells," ACS Sustainable Chemistry and Engineering, vol. 7, no. 6, s. 6061-6067, 2019.
[100]
P. Chen et al., "Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates," Macromolecules, vol. 52, no. 19, s. 7278-7288, 2019.
[101]
[102]
N. E. Mushi et al., "Strong and Tough Chitin Film from alpha-Chitin Nanofibers Prepared by High Pressure Homogenization and Chitosan Addition," ACS Sustainable Chemistry and Engineering, vol. 7, no. 1, s. 1692-1697, 2019.
[103]
H. Chen et al., "Thickness Dependence of Optical Transmittance of Transparent Wood : Chemical Modification Effects," ACS Applied Materials and Interfaces, vol. 11, no. 38, s. 35451-35457, 2019.
[104]
[105]
P. Olsen et al., "Transforming technical lignins to structurally defined star-copolymers under ambient conditions," Green Chemistry, vol. 21, no. 9, s. 2478-2486, 2019.
[106]
C. Montanari et al., "Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance," ACS Applied Materials and Interfaces, vol. 11, no. 22, s. 20465-20472, 2019.
[108]
L. Berglund och I. Burgert, "Bioinspired Wood Nanotechnology for Functional Materials," Advanced Materials, vol. 30, no. 19, 2018.
[109]
M. Koivurova et al., "Complete spatial coherence characterization of quasi-random laser emission from dye doped transparent wood," Optics Express, vol. 26, no. 10, s. 13474-13482, 2018.
[110]
E. Trovatti et al., "Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide," Carbohydrate Polymers, vol. 181, s. 256-263, 2018.
[113]
E. Vasileva et al., "Light Scattering by Structurally Anisotropic Media : A Benchmark with Transparent Wood," Advanced Optical Materials, vol. 6, no. 23, 2018.
[114]
M. Zhao et al., "Nematic structuring of transparent and multifunctional nanocellulose papers," Nanoscale Horizons, vol. 3, no. 1, s. 28-34, 2018.
[115]
Y. Li et al., "Optically Transparent Wood : Recent Progress, Opportunities, and Challenges," Advanced Optical Materials, vol. 6, no. 14, 2018.
[116]
G. Lo Re et al., "Poly(ε-caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance," ACS Sustainable Chemistry and Engineering, vol. 5, no. 6, s. 6753-6760, 2018.
[117]
M. Herrera et al., "Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp," Cellulose, vol. 25, no. 5, s. 3121-3133, 2018.
[118]
X. Yang, F. Berthold och L. Berglund, "Preserving Cellulose Structure : Delignified Wood Fibers for Paper Structures of High Strength and Transparency," Biomacromolecules, vol. 19, no. 7, s. 3020-3029, 2018.
[119]
A. Hajian, Q. Fu och L. Berglund, "Recyclable and superelastic aerogels based on carbon nanotubes and carboxymethyl cellulose," Composites Science And Technology, vol. 159, s. 1-10, 2018.
[120]
S. Morimune-Moriya et al., "Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films," Biomacromolecules, vol. 19, no. 7, s. 2423-2431, 2018.
[122]
D. O. Castro et al., "The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites," Composites Science And Technology, vol. 162, s. 215-224, 2018.
[123]
F. Ansari och L. A. Berglund, "Toward Semistructural Cellulose Nanocomposites : The Need for Scalable Processing and Interface Tailoring," Biomacromolecules, vol. 19, no. 7, s. 2341-2350, 2018.
[124]
[125]
Y. Li et al., "Towards centimeter thick transparent wood through interface manipulation," Journal of Materials Chemistry A, vol. 6, no. 3, s. 1094-1101, 2018.
[127]
Q. Fu et al., "Transparent plywood as a load-bearing and luminescent biocomposite," Composites Science And Technology, vol. 164, s. 296-303, 2018.
[128]
Y. Li et al., "Transparent wood for functional and structural applications," Philosophical Transactions. Series A : Mathematical, physical, and engineering science, vol. 376, no. 2112, 2018.
[129]
C. Gioia et al., "Tunable thermosetting epoxies based on fractionated and well-characterized lignins," Journal of the American Chemical Society, 2018.
[130]
X. Yang och L. Berglund, "Water-Based Approach to High-Strength All-Cellulose Material with Optical Transparency," ACS Sustainable Chemistry and Engineering, vol. 6, no. 1, s. 501-510, 2018.
[131]
K. Yao et al., "Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites," ACS Applied Materials and Interfaces, vol. 9, no. 23, s. 20169-20178, 2017.
[133]
R. Mao et al., "Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper," Journal of Materials Science, vol. 52, no. 16, s. 9508-9519, 2017.
[134]
Y. Bamba et al., "Estimating the Strength of Single Chitin Nanofibrils via Sonication-Induced Fragmentation," Biomacromolecules, vol. 18, no. 12, s. 4405-4410, 2017.
[135]
F. Ansari et al., "Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites," Composites. Part A, Applied science and manufacturing, vol. 96, s. 147-154, 2017.
[136]
A. Liu, L. Medina och L. A. Berglund, "High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils," ACS Applied Materials & Interfaces, vol. 9, no. 7, s. 6453-6461, 2017.
[137]
E. Vasileva et al., "Lasing from Organic Dye Molecules Embedded in Transparent Wood," Advanced Optical Materials, vol. 5, no. 10, 2017.
[138]
Y. Li et al., "Lignin-Retaining Transparent Wood," ChemSusChem, vol. 10, no. 17, s. 3445-3451, 2017.
[139]
Y. Li et al., "Luminescent Transparent Wood," Advanced Optical Materials, vol. 5, no. 1, 2017.
[140]
Q. Fu et al., "Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall," ACS Applied Materials and Interfaces, vol. 9, no. 41, s. 36154-36163, 2017.
[142]
F. Carosio et al., "Clay nanopaper as multifunctional brick and mortar fire protection coating : Wood case study," Materials & design, vol. 93, s. 357-363, 2016.
[144]
[145]
K. Prakobna et al., "Mechanical performance and architecture of biocomposite honeycombs and foams from core–shell holocellulose nanofibers," Composites. Part A, Applied science and manufacturing, vol. 88, s. 116-122, 2016.
[149]
[150]
I. Burgert et al., "Bio-inspired functional wood-based materials - hybrids and replicates," International Materials Reviews, vol. 60, no. 8, s. 431-450, 2015.
[153]
K. Prakobna et al., "Core-shell cellulose nanofibers for biocomposites : Nanostructural effects in hydrated state," Carbohydrate Polymers, vol. 125, s. 92-102, 2015.
[154]
F. Ansari et al., "Hierarchical wood cellulose fiber/epoxy biocomposites : Materials design of fiber porosity and nanostructure," Composites. Part A, Applied science and manufacturing, vol. 74, s. 60-68, 2015.
[155]
K. Prakobna, S. Galland och L. A. Berglund, "High-Performance and Moisture-Stable Cellulose-Starch Nanocomposites Based on Bioinspired Core-Shell Nanofibers," Biomacromolecules, vol. 16, no. 3, s. 904-912, 2015.
[156]
S. Galland et al., "Holocellulose nanofibers of high molar mass and small diameter for high-strength nanopaper," Biomacromolecules, vol. 16, no. 8, s. 2427-2435, 2015.
[157]
C. J. G. Plummer et al., "Influence of processing routes on morphology and low strain stiffness of polymer/nanofibrillated cellulose composites," Plastics, rubber and composites, vol. 44, no. 3, s. 81-86, 2015.
[158]
H. Soeta et al., "Low-Birefringent and Highly Tough Nanocellulose-Reinforced Cellulose Triacetate," ACS Applied Materials and Interfaces, vol. 7, no. 20, s. 11041-11046, 2015.
[160]
C. Djahedi, L. Berglund och J. Wohlert, "Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds," Carbohydrate Polymers, vol. 130, s. 175-182, 2015.
[161]
N. Keshavarzi et al., "Nanocellulose-Zeolite Composite Films for Odor Elimination," ACS Applied Materials and Interfaces, vol. 7, no. 26, s. 14254-14262, 2015.
[162]
[163]
N. Ezekiel Mushi, S. Utsel och L. . A. Berglund, "Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan," Frontiers in Chemistry, vol. 18, no. 2, 2015.
[164]
F. Ansari, M. Skrifvars och L. Berglund, "Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network," Composites Science And Technology, vol. 117, s. 298-306, 2015.
[165]
F. Carosio et al., "Oriented Clay Nanopaper from Biobased Components Mechanisms for Superior Fire Protection Properties," ACS Applied Materials and Interfaces, vol. 7, no. 10, s. 5847-5856, 2015.
[166]
K. Prakobna et al., "Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels," Journal of Materials Science, vol. 50, no. 22, s. 7413-7423, 2015.
[168]
A. Cobut, H. Sehaqui och L. A. Berglund, "Cellulose Nanocomposites by Melt Compounding of TEMPO-Treated Wood Fibers in Thermoplastic Starch Matrix," BioResources, vol. 9, no. 2, s. 3276-3289, 2014.
[170]
F. Ansari et al., "Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate," Composites. Part A, Applied science and manufacturing, vol. 63, s. 35-44, 2014.
[172]
P. A. Larsson, L. A. Berglund och L. Wågberg, "Ductile All-Cellulose Nanocomposite Films Fabricated from Core-Shell Structured Cellulose Nanofibrils," Biomacromolecules, vol. 15, no. 6, s. 2218-2223, 2014.
[174]
P. A. Larsson, L. A. Berglund och L. Wågberg, "Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils," Cellulose, vol. 21, no. 1, s. 323-333, 2014.
[175]
Y. Wang et al., "Molecular dynamics simulation of strong interaction mechanisms at wet interfaces in clay-polysaccharide nanocomposites," Journal of Materials Chemistry A, vol. 2, no. 25, s. 9541-9547, 2014.
[176]
R. de Francisco et al., "Multipurpose Ultra and Superhydrophobic Surfaces Based on Oligodimethylsiloxane-Modified Nanosilica," ACS Applied Materials and Interfaces, vol. 6, no. 21, s. 18998-19010, 2014.
[177]
A. M. Stepan et al., "Nanofibrillated cellulose reinforced acetylated arabinoxylan films," Composites Science And Technology, vol. 98, s. 72-78, 2014.
[178]
N. Ezekiel Mushi et al., "Nanopaper membranes from chitin-protein composite nanofibers : Structure and mechanical properties," Journal of Applied Polymer Science, vol. 131, no. 7, s. 40121, 2014.
[179]
N. E. Mushi et al., "Nanostructured membranes based on native chitin nanofibers prepared by mild process," Carbohydrate Polymers, vol. 112, s. 255-263, 2014.
[180]
K.-Y. Lee et al., "On the use of nanocellulose as reinforcement in polymer matrix composites," Composites Science And Technology, vol. 105, s. 15-27, 2014.
[181]
G. Cunha et al., "Preparation of Double Pickering Emulsions Stabilized by Chemically Tailored Nanocelluloses," Langmuir, vol. 30, no. 31, s. 9327-9335, 2014.
[182]
S. Galland et al., "Strong and Moldable Cellulose Magnets with High Ferrite Nanoparticle Content," ACS Applied Materials and Interfaces, vol. 6, no. 22, s. 20524-20534, 2014.
[183]
A. E. Donius et al., "Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting," Journal of The Mechanical Behavior of Biomedical Materials, vol. 37, s. 88-99, 2014.
[184]
M. Peltzer et al., "Surface modification of cellulose nanocrystals by grafting with poly(lactic acid)," Polymer international, vol. 63, no. 6, s. 1056-1062, 2014.
[186]
S. Galland et al., "UV-Cured Cellulose Nanofiber Composites with Moisture Durable Oxygen Barrier Properties," Journal of Applied Polymer Science, vol. 131, no. 16, s. 40604, 2014.
[188]
[191]
[195]
H. Liimatainen et al., "High-Strength Nanocellulose-Talc Hybrid Barrier Films," ACS Applied Materials and Interfaces, vol. 5, no. 24, s. 13412-13418, 2013.
[198]
I. Bjurhager et al., "Mechanical performance of yew (Taxus baccata L.) from a longbow perspective," Holzforschung, vol. 67, no. 7, s. 763-770, 2013.
[199]
H. Sehaqui et al., "Multifunctional Nanoclay Hybrids of High Toughness, Thermal, and Barrier Performances," ACS Applied Materials and Interfaces, vol. 5, no. 15, s. 7613-7620, 2013.
[202]
H. Sehaqui, Q. Zhou och L. A. Berglund, "Nanofibrillated cellulose for enhancement of strength in high-density paper structures," Nordic Pulp & Paper Research Journal, vol. 28, no. 2, s. 182-189, 2013.
[203]
J. Joby Kochumalayil et al., "Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films," Carbohydrate Polymers, vol. 93, no. 2, s. 466-472, 2013.
[205]
M. Salajkova et al., "Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes," Composites Science And Technology, vol. 87, s. 103-110, 2013.
[206]
J. S. Stevanic et al., "Arabinoxylan/nanofibrillated cellulose composite films," Journal of Materials Science, vol. 47, no. 18, s. 6724-6732, 2012.
[207]
H. Sehaqui et al., "Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing," ACS Applied Materials and Interfaces, vol. 4, no. 2, s. 1043-1049, 2012.
[210]
J. Wohlert, M. Bergenstråhle-Wohlert och L. A. Berglund, "Deformation of cellulose nanocrystals : entropy, internal energy and temperature dependence," Cellulose, vol. 19, no. 6, s. 1821-1836, 2012.
[211]
D. O. Carlsson et al., "Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties," Journal of Materials Chemistry, vol. 22, no. 36, s. 19014-19024, 2012.
[213]
C. Schütz et al., "Hard and Transparent Films Formed by Nanocellulose-TiO2 Nanoparticle Hybrids," PLOS ONE, vol. 7, no. 10, s. e45828, 2012.
[214]
M. Salajková, L. Berglund och Q. Zhou, "Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts," Journal of Materials Chemistry, vol. 22, no. 37, s. 19798-19805, 2012.
[215]
R. . L. Andersson et al., "Micromechanical Tensile Testing of Cellulose-Reinforced Electrospun Fibers Using a Template Transfer Method (TTM)," Journal of Polymers and the Environment, vol. 20, no. 4, s. 967-975, 2012.
[216]
E. Fortunati et al., "Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose," Polymer degradation and stability, vol. 97, no. 10, s. 2027-2036, 2012.
[217]
E. Fortunati et al., "Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles," Carbohydrate Polymers, vol. 87, no. 2, s. 1596-1605, 2012.
[218]
E. M. Bergström et al., "Plasticized xyloglucan for improved toughness-Thermal and mechanical behaviour," Carbohydrate Polymers, vol. 87, no. 4, s. 2532-2537, 2012.
[223]
J. Wohlert och L. A. Berglund, "A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose," Journal of Chemical Theory and Computation, vol. 7, no. 3, s. 753-760, 2011.
[225]
A. J. Svagan, L. A. Berglund och P. Jensen, "Cellulose Nanocomposite Biopolymer Foam-Hierarchical Structure Effects on Energy Absorption," ACS APPLIED MATERIALS & INTERFACES, vol. 3, no. 5, s. 1411-1417, 2011.
[226]
T. Yang et al., "Characterization of Well-Defined Poly(ethylene glycol) Hydrogels Prepared by Thiol-ene Chemistry," Journal of Polymer Science Part A : Polymer Chemistry, vol. 49, no. 18, s. 4044-4054, 2011.
[227]
[229]
Y. Yin, L. Berglund och L. Salmen, "Effect of Steam Treatment on the Properties of Wood Cell Walls," Biomacromolecules, vol. 12, no. 1, s. 194-202, 2011.
[230]
H. Sehaqui, Q. Zhou och L. A. Berglund, "High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)," Composites Science And Technology, vol. 71, no. 13, s. 1593-1599, 2011.
[231]
H. Lönnberg et al., "Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(ε-caprolactone) bilayer laminate," Composites Science And Technology, vol. 71, no. 1, s. 9-12, 2011.
[232]
L. Rueda et al., "Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane," Composites Science And Technology, vol. 71, no. 16, s. 1953-1960, 2011.
[233]
H. Sehaqui, Q. Zhou och L. A. Berglund, "Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix," Soft Matter, vol. 7, no. 16, s. 7342-7350, 2011.
[234]
M. Henriksson et al., "Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates," Composites Science And Technology, vol. 71, no. 1, s. 13-17, 2011.
[235]
[237]
H. Sehaqui et al., "Strong and Tough Cellulose Nanopaper with High Specific Surface Area and Porosity," Biomacromolecules, vol. 12, no. 10, s. 3638-3644, 2011.
[238]
H. Sehaqui et al., "Wood cellulose biocomposites with fibrous structures at micro- and nanoscale," Composites Science And Technology, vol. 71, no. 3, s. 382-387, 2011.
[239]
H. Nilsson et al., "A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose," Composites Science And Technology, vol. 70, no. 12, s. 1704-1712, 2010.
[240]
A. Walther, L. A. Berglund och O. Ikkala, "Biomimetic, large-area, layered composites with superior properties," European Cells and Materials, vol. 20, no. Suppl.3, s. 267, 2010.
[241]
L. A. Berglund och T. Peijs, "Cellulose Biocomposites : From Bulk Moldings to Nanostructured Systems," MRS bulletin, vol. 35, no. 3, s. 201-207, 2010.
[242]
S. M. Trey et al., "Electron-Beam-Initiated Polymerization of Poly(ethylene glycol)-Based Wood Impregnants," ACS APPL MATER INTERFACES, vol. 2, no. 11, s. 3352-3362, 2010.
[243]
H. Sehaqui et al., "Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures," Biomacromolecules, vol. 11, no. 9, s. 2195-2198, 2010.
[244]
A. Pei, Q. Zhou och L. A. Berglund, "Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) : Crystallization and mechanical property effects," Composites Science And Technology, vol. 70, no. 5, s. 815-821, 2010.
[246]
R. T. Olsson et al., "Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates," Nature Nanotechnology, vol. 5, no. 8, s. 584-588, 2010.
[248]
S. J. Eichhorn et al., "Review : current international research into cellulose nanofibres and nanocomposites," Journal of Materials Science, vol. 45, no. 1, s. 1-33, 2010.
[249]
A. Walther et al., "Supramolecular Control of Stiffness and Strength in Lightweight High-Performance Nacre-Mimetic Paper with Fire-Shielding Properties," Angewandte Chemie International Edition, vol. 49, no. 36, s. 6448-6453, 2010.
[250]
J. Kochumalayil et al., "Tamarind seed xyloglucan : a thermostable high-performance biopolymer from non-food feedstock," Journal of Materials Chemistry, vol. 20, no. 21, s. 4321-4327, 2010.
[252]
A. Svagan et al., "Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying," Journal of Materials Chemistry, vol. 20, no. 32, s. 6646-6654, 2010.
[253]
S. C. M. Fernandes et al., "Transparent chitosan films reinforced with a high content of nanofibrillated cellulose," Carbohydrate Polymers, vol. 81, no. 2, s. 394-401, 2010.
[255]
Q. Zhou et al., "Biomimetic design of cellulose-based nanostructured composites using bacterial cultures," Polymer Preprints, vol. 50, no. 2, s. 7-8, 2009.
[257]
I. Hassel, C. S. Modén och L. Berglund, "Functional gradient effects explain the low transverse shear modulus in spruce : Full-field strain data and a micromechanics model," Composites Science And Technology, vol. 69, no. 14, s. 2491-2496, 2009.
[259]
A. Svagan, M. Hedenqvist och L. A. Berglund, "Reduced water vapour sorption in cellulose nanocomposites with starch matrix," Composites Science And Technology, vol. 69, no. 3-4, s. 500-506, 2009.
[261]
I. Hassel et al., "The single cube apparatus for shear testing : Full-field strain data and finite element analysis of wood in transverse shear," Composites Science And Technology, vol. 69, no. 7-8, s. 877-882, 2009.
[262]
C. S. Modén och L. Berglund, "A two-phase annual ring model of transverse anisotropy in softwoods," Composites Science And Technology, vol. 68, no. 14, s. 3020-3028, 2008.
[263]
A. Svagan, M. A. S. Azizi Samir och L. A. Berglund, "Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils," Advanced Materials, vol. 20, no. 7, s. 1263-1269, 2008.
[264]
M. Henriksson et al., "Cellulose nanopaper structures of high toughness," Biomacromolecules, vol. 9, no. 6, s. 1579-1585, 2008.
[265]
M. Bergenstråhle et al., "Dynamics of Cellulose-Water Interfaces : NMR Spin-Lattice Relaxation Times Calculated from Atomistic Computer Simulations," Journal of Physical Chemistry B, vol. 112, no. 9, s. 2590-2595, 2008.
[266]
C. S. Modén och L. Berglund, "Elastic deformation mechanisms of softwoods in radial tension : Cell wall bending or stretching?," Holzforschung, vol. 62, no. 5, s. 562-568, 2008.
[269]
M. Bergenstråhle, K. Mazeau och L. Berglund, "Molecular modeling of interfaces between cellulose crystals and surrounding molecules : Effects of caprolactone surface grafting," European Polymer Journal, vol. 44, no. 11, s. 3662-3669, 2008.
[270]
H. Lönnberg et al., "Surface grafting of microfibrillated cellulose with poly(epsilon-caprolactone) - Synthesis and characterization," European Polymer Journal, vol. 44, no. 9, s. 2991-2997, 2008.
[271]
Q. Wu et al., "A High Strength Nanocomposite Based on Microcrystalline Cellulose and Polyurethane," Biomacromolecules, vol. 8, no. 12, s. 3687-3692, 2007.
[272]
M. Henriksson et al., "An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers," European Polymer Journal, vol. 43, no. 8, s. 3434-3441, 2007.
[273]
A. Svagan, M. A. S. Azizi Samir och L. Berglund, "Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness," Biomacromolecules, vol. 8, no. 8, s. 2556-2563, 2007.
[274]
A. Shipsha och L. A. Berglund, "Shear coupling effects on stress and strain distributions in wood subjected to transverse compression," Composites Science And Technology, vol. 67, no. 08-jul, s. 1362-1369, 2007.
[275]
M. Henriksson och L. Berglund, "Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde," Journal of Applied Polymer Science, vol. 106, no. 4, s. 2817-2824, 2007.
[276]
M. Bergenstråhle, L. Berglund och K. Mazeau, "Thermal Response in Crystalline Iβ Cellulose : A Molecular Dynamics Study," Journal of Physical Chemistry B, vol. 111, no. 30, s. 9138-9145, 2007.
[277]
J. Ljungdahl och L. Berglund, "Transverse mechanical behaviour and moisture adsorption of waterlogged archaeological wood from the Vasa ship," Holzforschung, vol. 61, no. 3, s. 279-284, 2007.
[278]
A. J. Nunez, M. I. Aranguren och L. A. Berglund, "Toughening of wood particle composites - Effects of sisal fibers," Journal of Applied Polymer Science, vol. 101, no. 3, s. 1982-1987, 2006.
[279]
J. Ljungdahl, L. Berglund och M. Burman, "Transverse anisotropy of compressive failure in European oak : A digital speckle photography study," Holzforschung, vol. 60, no. 2, s. 190-195, 2006.
[280]
M. Oldenbo et al., "Global stiffness of a SMC panel considering process induced fiber orientation," Journal of reinforced plastics and composites (Print), vol. 23, no. 1, s. 37-49, 2004.
[281]
P. Lingois et al., "Chemically induced residual stresses in dental composites," Journal of Materials Science, vol. 38, no. 6, s. 1321-1331, 2003.
[282]
N. Emami, K. J. M. Soderholm och L. A. Berglund, "Effect of light power density variations on bulk curing properties of dental composites," Journal of Dentistry, vol. 31, no. 3, s. 189-196, 2003.
[283]
M. Oldenbo, S. P. Fernberg och L. A. Berglund, "Mechanical behaviour of SMC composites with toughening and low density additives," Composites. Part A, Applied science and manufacturing, vol. 34, no. 9, s. 875-885, 2003.
[284]
X. H. Liu et al., "Polyamide 6/clay nanocomposites using a cointercalation organophilic clay via melt compounding," Journal of Applied Polymer Science, vol. 88, no. 4, s. 953-958, 2003.
[285]
F. Mujika et al., "45 degrees flexure test for measurement of in-plane shear modulus," Journal of composite materials, vol. 36, no. 20, s. 2313-2337, 2002.
[286]
Q. J. Wu, X. H. Liu och L. A. Berglund, "FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites," Polymer, vol. 43, no. 8, s. 2445-2449, 2002.
[287]
X. Kornmann et al., "High performance epoxy-layered silicate nanocomposites," Polymer Engineering and Science, vol. 42, no. 9, s. 1815-1826, 2002.
[288]
X. H. Liu et al., "High-temperature X-ray diffraction studies on polyamide6/clay nanocomposites upon annealing," Polymer Bulletin, vol. 48, no. 05-apr, s. 381-387, 2002.
[289]
X. H. Liu et al., "Investigation on unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites," Macromolecular materials and engineering, vol. 287, no. 8, s. 515-522, 2002.
[290]
P. Lingois och L. A. Berglund, "Modeling elastic properties and volume change in dental composites," Journal of Materials Science, vol. 37, no. 21, s. 4573-4579, 2002.
[291]
F. Thuvander, G. Kifetew och L. A. Berglund, "Modeling of cell wall drying stresses in wood," Wood Science and Technology, vol. 36, no. 3, s. 241-254, 2002.
[292]
E. Schauer et al., "Morphological variations in PMMA-modified epoxy mixtures by PEO addition," Polymer, vol. 43, no. 4, s. 1241-1248, 2002.
[293]
K. Oksman et al., "Morphology and mechanical properties of unidirectional sisal-epoxy composites," Journal of Applied Polymer Science, vol. 84, no. 13, s. 2358-2365, 2002.
[294]
T. Kislev et al., "On the nature of opaque cylindrical regions formed at fibre break sites in a fragmentation test," Advanced Composites Letters, vol. 11, no. 1, s. 7-13, 2002.
[295]
X. H. Liu, Q. J. Wu och L. A. Berglund, "Polymorphism in polyamide 66/clay nanocomposites," Polymer, vol. 43, no. 18, s. 4967-4972, 2002.
[296]
G. Nilsson, S. P. Fernberg och L. A. Berglund, "Strain field inhomogeneities and stiffness changes in GMT containing voids," Composites. Part A, Applied science and manufacturing, vol. 33, no. 1, s. 75-85, 2002.
[297]
X. Kornmann et al., "Synthesis of amine-cured, epoxy-layered silicate nanocomposites : The influence of the silicate surface modification on the properties," Journal of Applied Polymer Science, vol. 86, no. 10, s. 2643-2652, 2002.
[298]
Q. J. Wu, X. H. Liu och L. A. Berglund, "An unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites," Macromolecular rapid communications, vol. 22, no. 17, s. 1438-1440, 2001.
[299]
S. P. Fernberg och L. A. Berglund, "Bridging law and toughness characterisation of CSM and SMC composites," Composites Science And Technology, vol. 61, no. 16, s. 2445-2454, 2001.
[300]
F. Thuvander et al., "Effects of an impregnation procedure for prevention of wood cell wall damage due to drying," Wood Science and Technology, vol. 34, no. 6, s. 473-480, 2001.
[301]
X. H. Liu et al., "Polyamide 6-clay nanocompositles/polypropylene-grafted-maleic anhydride alloys," Polymer, vol. 42, no. 19, s. 8235-8239, 2001.
[302]
X. Kornmann, H. Lindberg och L. A. Berglund, "Synthesis of epoxy-clay nanocomposites : influence of the nature of the clay on structure," Polymer, vol. 42, no. 4, s. 1303-1310, 2001.
[303]
X. Kornmann, H. Lindberg och L. A. Berglund, "Synthesis of epoxy-clay nanocomposites. Influence of the nature of the curing agent on structure," Polymer, vol. 42, no. 10, s. 4493-4499, 2001.
[304]
J. E. Lindhagen och L. A. Berglund, "Application of bridging-law concepts to short-fibre composites - Part 1 : DCB test procedures for bridging law and fracture energy," Composites Science And Technology, vol. 60, no. 6, s. 871-883, 2000.
[305]
J. E. Lindhagen och L. A. Berglund, "Application of bridging-law concepts to short-fibre composites - Part 2. Notch sensitivity," Composites Science And Technology, vol. 60, no. 6, s. 885-893, 2000.
[306]
J. E. Lindhagen, N. Jekabsons och L. A. Berglund, "Application of bridging-law concepts to short-fibre composites 4. FEM analysis of notched tensile specimens," Composites Science And Technology, vol. 60, no. 16, s. 2895-2901, 2000.
[307]
J. E. Lindhagen, E. K. Gamstedt och L. A. Berglund, "Application of bridging-law concepts to short-fibre composites Part 3 : Bridging law derivation from experimental crack profiles," Composites Science And Technology, vol. 60, no. 16, s. 2883-2894, 2000.
[308]
S. P. Fernberg och L. A. Berglund, "Effects of glass fiber size composition (film-former type) on transverse cracking in cross-ply laminates," Composites. Part A, Applied science and manufacturing, vol. 31, no. 10, s. 1083-1090, 2000.
[309]
F. Thuvander och L. A. Berglund, "In situ observations of fracture mechanisms for radial cracks in wood," Journal of Materials Science, vol. 35, no. 24, s. 6277-6283, 2000.
[310]
F. Thuvander, M. Sjodahl och L. A. Berglund, "Measurements of crack tip strain field in wood at the scale of growth rings," Journal of Materials Science, vol. 35, no. 24, s. 6267-6275, 2000.
[311]
B. Andersson, A. Sjogren och L. A. Berglund, "Micro- and meso-level residual stresses in glass-fiber/vinyl-ester composites," Composites Science And Technology, vol. 60, no. 10, s. 2011-2028, 2000.
[312]
B. A. Sjögren och L. A. Berglund, "The effects of matrix and interface on damage in CRP cross-ply laminates," Composites Science And Technology, vol. 60, no. 1, s. 9-21, 2000.
[313]
T. Glauser et al., "Toughening of electron-beam cured acrylate resins," Macromolecular materials and engineering, vol. 280, no. 08-jul, s. 20-25, 2000.

Konferensbidrag

[314]
F. Ram och L. Berglund, "FUNCTIONALIZED WOOD COMPOSITES FOR MECHANICAL ENERGY HARVESTING AND VIBRATION SENSING," i ECCM 2022 : Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability, 2022, s. 801-806.
[315]
H. Mianehrow, L. Berglund och J. Wohlert, "MOISTURE EFFECTS IN NANOCOMPOSITES OF 2D GRAPHENE OXIDE IN CELLULOSE NANOFIBER (CNF) MATRIX : A MOLECULAR DYNAMICS STUDY," i ECCM 2022 : Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability, 2022, s. 718-725.
[316]
M. V. Tavares da Costa, J. Wohlert och L. Berglund, "Mechanical modelling to assess stiffness, strength and toughness of nacre-inspired nano composites," i 18th European Mechanics of Materials Conference (EMMC18), April 4 - 6, 2022, Oxford, UK, 2022.
[317]
M. V. Tavares da Costa och L. Berglund, "The effective in-plane elastic modulus of clay platelets reinforced cellulose nanocomposites using computational homogenization," i Svenska Mekanikdagar, Luleå University of Technology, 15-16 juni, 2022, 2022.
[319]
H. Mianehrow, G. Lo Re och L. Berglund, "Strong nanopaperes based on cellulose nanofibrils and graphene oxide," i ECCM 2018 - 18th European Conference on Composite Materials, 2020.
[320]
S. Popov et al., "Polymer photonics and nano-materials for optical communication," i 2018 17TH WORKSHOP ON INFORMATION OPTICS (WIO), 2018.
[321]
Z. Karim et al., "Production of nanofibrillated cellulose reinforced nanopaper using pilot scale Experimental Paper Machine (XPM)," i NWBC 2018 - Proceedings of the 8th Nordic Wood Biorefinery Conference, 2018, s. 175-176.
[322]
L. Berglund, "Cellulose-clay synergy effects in multifunctional hybrid composites," i International Conference on Nanotechnology for Renewable Materials 2017, 2017, s. 233-244.
[323]
F. Ansari, L. Berglund och L. Medina, "Epoxies can solve moisture problems in nanocellulose materials," i International Conference on Nanotechnology for Renewable Materials 2017, 2017, s. 1220-1227.
[324]
Z. Karim et al., "Forming a cellulose based nanopaper using XPM," i International Conference on Nanotechnology for Renewable Materials 2017, 2017, s. 399-407.
[325]
D. Oliveira de Castro et al., "Scale up of nanocellulose/hybrid inorganic films using a pilot web former," i International Conference on Nanotechnology for Renewable Materials 2017, 2017, s. 408-418.
[326]
E. Vasileva et al., "Transparent wood as a novel material for non-cavity laser," i 2016 Asia Communications and Photonics Conference, ACP 2016, 2016.
[327]
L. Berglund och F. Ansari, "Cellulose Nanocomposites With Ductile Mechanical Behavior," i 20Th International Conference On Composite Materials, 2015.
[328]
F. Ansari et al., "Cellulose nanocomposites - Controlling dispersion and material properties through nanocellulose surface modification," i 20th International Conference on Composite Materials, ICCM 2015, 2015.
[329]
A. Hajian och L. Berglund, "Conductive and strong nanocomposites based on cellulose nanofibrils and carbon nanotubes," i 20th International Conference on Composite Materials, ICCM 2015, 2015.
[330]
Q. Fu och L. Berglund, "Honeycomb like templates prepared from balsa wood," i 20th International Conference on Composite Materials, ICCM 2015, 2015.
[331]
C. J. G. Plummer et al., "Influence of processing routes on the morphology and properties of polymer/nanofibrillated cellulose composites," i 16th European Conference on Composite Materials, ECCM 2014, 2014.
[332]
A. Cataldi et al., "Polymer composite with micro- and nanocellulose for artwork protection and restoration," i 16th European Conference on Composite Materials, ECCM 2014, 2014.
[333]
E. Vasileva et al., "Transparent wood as a novel material for non-cavity laser," i Optics InfoBase Conference Papers, 2014.
[335]
P. A. Larsson, L. Berglund och L. Wågberg, "Ductile cellulose nanocomposite films fabricated from nanofibrillated cellulose after partial conversion to dialcohol cellulose," i 245th ACS National Meeting and Exposition April 7-11, 2013, New Orleans, Louisiana, 2013.
[336]
F. Ansari et al., "Stiff and ductile nanocomposites of epoxy reinforced with cellulose nanofibrils," i ICCM International Conferences on Composite Materials, 2013, s. 5575-5582.
[337]
L. A. Berglund et al., "Bioinspired clay nanocomposites of very high clay content," i ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, 2012.
[338]
A. Liu och L. Berglund, "A new cellulose/clay nanopaper," i 6th International ECNP Conference on Nanostructured Polymers and Nanocomposites, 2011.
[339]
M. Henriksson et al., "New nanocomposite concept based on crosslinking of hyperbranched polymers in cellulose nanopaper templates," i International Conference on Nanotechnology for the Forest Products Industry 2010, 2010, s. 880-897.
[340]
H. Sehaqui et al., "Biomimetic aerogels from microfibrillated cellulose and xyloglucan," i ICCM-17 17th International Conference on Composite Materials, 2009.
[341]
H. Jin et al., "Effects of different drying methods on textural properties of nanocellulose aerogels," i ICCM-17 17th International Conference on Composite Materials, 2009.
[342]
M. Salajkova et al., "Nanostructured composite materials from microfibrillated cellulose and carbon nanotubes," i ICCM-17 17th International Conference on Composite Materials, 2009.
[343]
B. I. Hassel et al., "Single cube apparatus - Shear properties determination and shear strain variation in natural density gradient materials," i ICCM-17 17th International Conference on Composite Materials, 2009.
[344]
B. I. Hassel et al., "Single cube apparatus - Shear properties determination and shear strain variation in natural density gradient materials," i Proceedings of the ICCM International Conferences on Composite Materials : ICCM-17, 2009.

Kapitel i böcker

[346]
Q. Zhou och L. A. Berglund, "CHAPTER 9 PLA-nanocellulose Biocomposites," i Poly(lactic acid) Science and Technology : Processing, Properties, Additives and Applications, : The Royal Society of Chemistry, 2015, s. 225-242.
[347]
L. Berglund, "Toughness and Strength of Wood Cellulose-based Nanopaper and Nanocomposites," i HANDBOOK OF GREEN MATERIALS, VOL 2 : BIONANOCOMPOSITES: PROCESSING, CHARACTERIZATION AND PROPERTIES, : World Scientific, 2014, s. 121-129.

Icke refereegranskade

Artiklar

[348]
A. Jimenez et al., "Editorial on special issue for BIOPOL-2019," Polymer degradation and stability, vol. 187, 2021.
[349]
P. Chen et al., "Heterogeneous dynamics in cellulose from molecular dynamics simulations," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[350]
L. Berglund, X. Yang och F. Berthold, "Holocellulose fibers : combining mechanical performance and optical transmittance," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[351]
C. Montanari, Y. Li och L. Berglund, "Multifunctional transparent wood for thermal energy storage applications," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[352]
C. Gioia et al., "Tunable polymer systems containing well-characterized derivatives from lignin," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[353]
L. Medina och L. Berglund, "Brick-and-mortar biocomposites from cellulose nanofibrils and clay nanoplatelets," Abstracts of Papers of the American Chemical Society, vol. 255, 2018.
[354]
L. Berglund och X. Yang, "Design of biodegradable cellulosic nanomaterials combining mechanical strength and optical transmittance," Abstracts of Papers of the American Chemical Society, vol. 256, 2018.
[355]
H. Soeta et al., "Grafting density design of surface-modified nanocellulose for polymer composites," Abstracts of Papers of the American Chemical Society, vol. 255, 2018.
[357]
L. Berglund et al., "Modification of transparent wood for photonics functions," Abstracts of Papers of the American Chemical Society, vol. 255, 2018.
[358]
M. Zhao et al., "Nematic structuring of transparent and multifunctional nanocellulose papers," Abstracts of Papers of the American Chemical Society, vol. 255, 2018.
[359]
G. Lo Re et al., "Melt-processing of cellulose pulp and polycaprolactone composites : Wet feeding approach to improve the filler dispersion," Abstracts of Papers of the American Chemical Society, vol. 253, 2017.
[360]
F. Ansari, R. Rojas Escontrillas och L. Berglund, "Molecular blending and reinforcing effect of lignin in ductile epoxy resins," Abstracts of Papers of the American Chemical Society, vol. 253, 2017.
[362]
X. Yang och L. Berglund, "Oriented all-cellulose film based on ramie fiber with high mechanical property and transparency," Abstracts of Papers of the American Chemical Society, vol. 253, 2017.
[363]
Q. Fu och L. Berglund, "Hierarchically structured nanoporous template based on balsa wood," Abstracts of Papers of the American Chemical Society, vol. 251, 2016.
[364]
L. Berglund, "Mechanical behavior of nanostructured cellulosic materials," Abstracts of Papers of the American Chemical Society, vol. 251, 2016.
[365]
L. Medina, F. Carosio och L. Berglund, "Mechanically strong and fire-retardant nanocomposite aerogels based on cellulose nanofibers and montmorillonite clay," Abstracts of Papers of the American Chemical Society, vol. 252, 2016.
[366]
A. Hajian et al., "Nanocellulose as dispersant for carbon nanotube suspensions," Abstracts of Papers of the American Chemical Society, vol. 251, 2016.
[367]
F. Carosio et al., "Nanocellulose/clay thin films and foams : Biobased nanocomposites with superior flame retardant properties," Abstracts of Papers of the American Chemical Society, vol. 252, 2016.
[368]
C. Terenzi et al., "Interphase effects on polymer and water dynamics in cellulose biocomposites-2H and 13C NMR relaxometry," Abstracts of Papers of the American Chemical Society, vol. 250, 2015.
[369]
K. Prakobna, F. Berthold och L. A. Berglund, "Architecture of ultra-high porous honeycombs prepared from core-shell nanocellulose : Structure and mechanical performance," Abstracts of Papers of the American Chemical Society, vol. 247, s. 160-CELL, 2014.
[370]
F. Ansari et al., "Biocomposites of nanofibrillated cellulose with thermoset resins," Abstracts of Papers of the American Chemical Society, vol. 247, s. 41-CELL, 2014.
[371]
N. E. Mushi, Q. Zhou och L. A. Berglund, "Membrane and hydrogel properties from chitin fibril structures : Structure and properties at neutral pH," Abstracts of Papers of the American Chemical Society, vol. 247, s. 21-CELL, 2014.
[372]
J. J. Kochumalayil och L. A. Berglund, "Moisture-stable clay-xyloglucan nanocomposites prepared from hydrocolloidal suspensions," Abstracts of Papers of the American Chemical Society, vol. 247, s. 204-CELL, 2014.
[373]
A. Pei, L. A. Berglund och Q. Zhou, "Surface-modification of nanocelluloses and their applications in poly(lactic acid)/nanocellulose biocomposites," Abstracts of Papers of the American Chemical Society, vol. 247, s. 163-CELL, 2014.
[374]
K.-Y. Lee et al., "Utilising the full potential of bacterial cellulose in composite materials : Can it be done?," Abstracts of Papers of the American Chemical Society, vol. 247, s. 309-CELL, 2014.
[375]
T. Saito et al., "Mechanical strength of single cellulose nanofibrils estimated from sonication-induced fragmentation," Abstracts of Papers of the American Chemical Society, vol. 245, 2013.
[377]
N. Butchosa et al., "Antimicrobial activity of biocomposites based on bacterial cellulose and chitin nanoparticles," Abstracts of Papers of the American Chemical Society, vol. 243, 2012.
[378]
O. Ikkala et al., "Native cellulose nanofibers : From biomimetic nanocomposites to functionalized gel spun fibers and functional aerogels," Abstracts of Papers of the American Chemical Society, vol. 243, 2012.
[379]
A. Pei et al., "Surface quaternized cellulose nanofibrils for high-performance anionic dyes removal in water," Abstracts of Papers of the American Chemical Society, vol. 243, 2012.
[380]
M. Paakko et al., "Flexible and hierarchically porous nanocellulose aerogels : Templates for functionalities," Abstracts of Papers of the American Chemical Society, vol. 239, 2010.
[381]
L. Berglund, K. Jonasson och M. Uhlén, "Antibodypedia-towards a user community for antibody validation data," New Biotechnology, vol. 25, s. S360-S361, 2009.
[382]
M. Paakko et al., "Native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities," Abstracts of Papers of the American Chemical Society, vol. 238, 2009.
[383]
M. Bergenstrahle, L. Berglund och K. Mazeau, "CARB 18-Thermal response in crystalline cellulose : A molecular dynamics study," Abstracts of Papers of the American Chemical Society, vol. 235, 2008.

Konferensbidrag

[384]
J. Kochumalayil, Q. Zhou och L. Berglund, "Nanostructured high-performance biocomposites based on Tamarind seed polysaccharide," i 2nd International Polysaccharide Conference, Aug. 29 – Sep.2, Wageningen, The Netherlands, 2011.
[385]
J. Kochumalayil, Q. Zhou och L. Berglund, "Nanostructured high-performance biocomposites based on Tamarind seed xyloglucan," i European Congress and Exhibition on Advanced Materials and Processes, Sep. 12–15, Montpellier, France, 2011.
[386]
J. Kochumalayil et al., "Tamarind seed xyloglucan : a promising biopolymer matrix for bioinspired nanocomposite materials," i 3rd Young Polymer Scientists Conference on Nanostructured Polymer Materilas: From Chemistry to Applications, Apr. 25–27, Madrid, Spain, 2010, 2010.

Kapitel i böcker

[387]
L. Berglund, "Wood biocomposites and structural fibre materials," i Mechanics of Paper Products, : Walter de Gruyter GmbH, 2021, s. 281-309.
[388]
F. Ansari och L. A. Berglund, "Tensile Properties of Wood Cellulose Nanopaper and Nanocomposite Films," i Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, : Elsevier Inc., 2016, s. 115-130.
[389]
M. A. Irle et al., "Wood composites," i Handbook of Wood Chemistry and Wood Composites, Roger M. Rowell red., 2. uppl. : Informa UK Limited, 2012, s. 321-412.

Övriga

[403]
[406]
A. Svagan, M. Azizi Samir och L. Berglund, "Nanocomposite cellulose-starch foams prepared by lyophilization," (Manuskript).

Patent

Patent

[422]
L. Berglund, H. Sehaqui och Q. Zhou, "Cellulose-based materials comprising nanofibrillated cellulose from native cellulose," WO 2012134378A1, 2011.
[423]
L. Berglund, Q. Zhou och J. J. Kochumalayil, "Oxygen barrier for packaging applications," WO 2012150904A1, 2011.
[424]
A. Liu och L. Berglund, "Strong nanopaper," us 8658287B2 (2014-02-25), 2010.
[425]
M. Henriksson et al., "Method of producing and the use of microfibrillated paper," us 2010065236A1, 2009.
[427]
J. Kochumalayil et al., "Xyloglucan films," WO 2011040871A1, 2009.
Senaste synkning med DiVA:
2024-05-06 00:27:51