Skip to main content

Publications by Gastón Adrián Crespo Paravano

Refereegranskade

Artiklar

[1]
Y. Liu, G. A. Crespo and M. Cuartero, "Voltammetric Ion-Selective Electrodes in Thin-Layer Samples : Absolute Detection of Ions Using Ultrathin Membranes," Analytical Chemistry, vol. 96, no. 3, pp. 1147-1155, 2024.
[2]
[3]
[4]
X. Xuan et al., "Fully Integrated Wearable Device for Continuous Sweat Lactate Monitoring in Sports," ACS Sensors, vol. 8, no. 6, pp. 2401-2409, 2023.
[5]
A. Wiorek et al., "Imaging of CO2 and Dissolved Inorganic Carbon via Electrochemical Acidification–Optode Tandem," ACS Sensors, vol. 8, no. 7, pp. 2843-2851, 2023.
[6]
A. Molinero Fernandez et al., "In Vivo Transdermal Multi-Ion Monitoring with a Potentiometric Microneedle-Based Sensor Patch," ACS Sensors, vol. 8, no. 1, pp. 158-166, 2023.
[7]
J. Kumsab et al., "Integrated lateral flow immunoassays using trimethylsilyl cellulose barriers for the enhanced sensitivity of COVID-19 diagnosis," Journal of Science: Advanced Materials and Devices, vol. 8, no. 4, 2023.
[9]
A. Wiorek, M. Cuartero and G. A. Crespo, "Selective Deionization of Thin-Layer Samples Using Tandem Carbon Nanotubes-Polymeric Membranes," Analytical Chemistry, vol. 95, no. 42, pp. 15681-15689, 2023.
[10]
F. Steininger et al., "Imaging Sample Acidification Triggered by Electrochemically Activated Polyaniline," Analytical Chemistry, vol. 94, no. 40, pp. 13647-13651, 2022.
[12]
Q. Wang et al., "Intradermal Glycine Detection with a Wearable Microneedle Biosensor : The First In Vivo Assay," Analytical Chemistry, vol. 94, no. 34, pp. 11856-11864, 2022.
[13]
A. Wiorek, M. Cuartero and G. A. Crespo, "Selective Ion Capturing via Carbon Nanotubes Charging," Analytical Chemistry, vol. 94, no. 21, pp. 7455-7459, 2022.
[14]
Y. Liu, G. A. Crespo and M. Cuartero, "Spectroelectrochemistry with Ultrathin lon-Selective Membranes : Three Distinct Ranges for Analytical Sensing," Analytical Chemistry, vol. 94, no. 25, pp. 9140-9148, 2022.
[17]
K. Van Hoovels et al., "Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology?," ACS Sensors, vol. 6, no. 10, pp. 3496-3508, 2021.
[19]
Q. Wang et al., "Electrochemical biosensor for glycine detection in biological fluids," Biosensors & bioelectronics, vol. 182, 2021.
[20]
K. Xu et al., "Electrochemical detection of trace silver," Electrochimica Acta, vol. 374, 2021.
[21]
X. Xuan et al., "Lactate Biosensing for Reliable On-Body Sweat Analysis," ACS Sensors, vol. 6, no. 7, pp. 2763-2771, 2021.
[22]
J. J. Garcia-Guzman et al., "Microneedle based electrochemical (Bio)Sensing : Towards decentralized and continuous health status monitoring," TrAC. Trends in analytical chemistry, vol. 135, 2021.
[23]
A. Molina Osorio et al., "Modelling electrochemical modulation of ion release in thin-layer samples," JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 903, pp. 115851, 2021.
[24]
[25]
A. Wiorek et al., "Reagentless Acid–Base Titration for Alkalinity Detection in Seawater," Analytical Chemistry, vol. 93, no. 42, pp. 14130-14137, 2021.
[26]
Y. Liu, G. A. Crespo and M. Cuartero, "Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer," Electrochimica Acta, vol. 388, pp. 138634, 2021.
[27]
J. J. Garcia-Guzman et al., "Toward In Vivo Transdermal pH Sensing with a Validated Microneedle Membrane Electrode," ACS Sensors, vol. 6, no. 3, pp. 1129-1137, 2021.
[30]
W. Ning et al., "Magnetizing lead-free halide double perovskites," Science Advances, vol. 6, no. 45, 2020.
[34]
K. Xu, M. Cuartero and G. A. Crespo, "Subnanomolar detection of ions using thin voltammetric membranes with reduced Exchange capacity," Sensors and actuators. B, Chemical, vol. 321, 2020.
[37]
C. Pérez Ràfols et al., "Why Not Glycine Electrochemical Biosensors?," Sensors, vol. 20, no. 14, 2020.
[39]
R. Cánovas et al., "Cytotoxicity Study of Ionophore-Based Membranes : Toward On Body and in Vivo Ion Sensing," ACS SENSORS, vol. 4, no. 9, pp. 2524-2535, 2019.
[42]
K. Xu, M. Cuartero and G. A. Crespo, "Lowering the limit of detection of ion-selective membranes backside contacted with a film of poly(3-octylthiophene)," Sensors and actuators. B, Chemical, vol. 297, 2019.
[43]
R. Cánovas, M. Cuartero and G. A. Crespo, "Modern creatinine (Bio)sensing : Challenges of point-of-care platforms," Biosensors & bioelectronics, vol. 130, pp. 110-124, 2019.
[44]
A. Wiorek et al., "Polyaniline Films as Electrochemical-Proton Pump for Acidification of Thin Layer Samples," Analytical Chemistry, vol. 91, no. 23, pp. 14951-14959, 2019.
[45]
B. Endrodi et al., "Selective Hydrogen Evolution on Manganese Oxide Coated Electrodes : New Cathodes for Sodium Chlorate Production," ACS Sustainable Chemistry and Engineering, vol. 7, no. 14, pp. 12170-12178, 2019.
[46]
M. Parrilla et al., "Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection," Analytical Chemistry, vol. 91, no. 2, pp. 1578-1586, 2019.
[48]
M. Cuartero, M. Parrilla and G. A. Crespo, "Wearable Potentiometric Sensors for Medical Applications," Sensors, vol. 19, no. 2, 2019.
[49]
M. Parrilla, M. Cuartero and G. A. Crespo, "Wearable potentiometric ion sensors," TrAC. Trends in analytical chemistry, vol. 110, pp. 303-320, 2019.
[50]
M. C. Crespi et al., "Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity," Talanta : The International Journal of Pure and Applied Analytical Chemistry, vol. 177, pp. 191-196, 2018.
[51]
M. Cuartero and G. A. Crespo, "All-solid-state potentiometric sensors : A new wave for in situ aquatic research," Current Opinion in Electrochemistry, vol. 10, pp. 98-106, 2018.
[53]
T. Paulraj et al., "Porous Cellulose Nanofiber-Based Microcapsules for Biomolecular Sensing," ACS Applied Materials and Interfaces, vol. 10, no. 48, pp. 41146-41154, 2018.
[55]
M. Cuartero et al., "Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes," Electrochimica Acta, vol. 238, pp. 357-367, 2017.
[56]
N. Pankratova et al., "Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids," Biosensors and Bioelectronics, vol. 99, pp. 70-76, 2017.
[57]
M. Cuartero et al., "In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes," ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, vol. 4, no. 10, pp. 410-415, 2017.
[58]
N. Pankratova et al., "In-Line Acidification for Potentiometric Sensing of Nitrite in Natural Waters," Analytical Chemistry, vol. 89, no. 1, pp. 571-575, 2017.
[60]
G. A. Crespo, "Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis," Electrochimica Acta, vol. 245, pp. 1023-1034, 2017.
[61]
R. Athavale et al., "Robust Solid-Contact Ion Selective Electrodes for High-Resolution In Situ Measurements in Fresh Water Systems," ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, vol. 4, no. 7, pp. 286-291, 2017.
[62]
D. J. Yuan et al., "Voltammetric Thin-Layer Ionophore-Based Films : Part 2. Semi-Empirical Treatment," Analytical Chemistry, vol. 89, no. 1, pp. 595-602, 2017.
[63]
D. J. Yuan et al., "Voltammetric Thin-Layer lonophore-Based Films : Part 1. Experimental Evidence and Numerical Simulations," Analytical Chemistry, vol. 89, no. 1, pp. 586-594, 2017.
[65]
M. Cuartero et al., "Electrochemical Ion Transfer with Thin Films of Poly(3-octylthiophene)," Analytical Chemistry, vol. 88, no. 13, pp. 6939-6946, 2016.
[67]
M. G. Afshar, G. A. Crespo and E. Bakker, "Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection," Analytical Chemistry, vol. 88, no. 7, pp. 3945-3952, 2016.
[68]
M. Cuartero, G. A. Crespo and E. Bakker, "Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes," Analytical Chemistry, vol. 88, no. 3, pp. 1654-1660, 2016.
[70]
S. Jansod et al., "Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes," Biosensors & bioelectronics, vol. 79, pp. 114-120, 2016.
[71]
M. Cuartero, G. A. Crespo and E. Bakker, "Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing," Analytical Chemistry, vol. 88, no. 11, pp. 5649-5654, 2016.
[73]
G. A. Crespo et al., "Characterization of Salophen Co(III) Acetate Ionophore for Nitrite Recognition," Electrochimica Acta, vol. 179, pp. 16-23, 2015.
[74]
M. G. Afshar, G. A. Crespo and E. Bakker, "Coulometric Calcium Pump for Thin Layer Sample Titrations," Analytical Chemistry, vol. 87, no. 19, pp. 10125-10130, 2015.
[76]
R. Athavale et al., "In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes," Analytical Chemistry, vol. 87, no. 24, pp. 11990-11997, 2015.
[77]
M. Cuartero, G. A. Crespo and E. Bakker, "Paper-Based Thin-Layer Coulometric Sensor for Halide Determination," Analytical Chemistry, vol. 87, no. 3, pp. 1981-1990, 2015.
[78]
N. Pankratova et al., "Potentiometric sensing array for monitoring aquatic systems," Environmental Science : Processes & Impacts, vol. 17, no. 5, pp. 906-914, 2015.
[79]
M. Cuartero, G. A. Crespo and E. Bakker, "Tandem Electrochemical Desalination-Potentiometric Nitrate Sensing for Seawater Analysis," Analytical Chemistry, vol. 87, no. 16, pp. 8084-8089, 2015.
[80]
M. G. Afshar et al., "Thin Layer Coulometry of Nitrite with Ion-Selective Membranes," Electroanalysis, vol. 27, no. 3, pp. 609-615, 2015.
[81]
G. A. Crespo, M. Cuartero and E. Bakker, "Thin Layer Ionophore-Based Membrane for Multianalyte Ion Activity Detection," Analytical Chemistry, vol. 87, no. 15, pp. 7729-7737, 2015.
[82]
M. Cuartero, G. A. Crespo and E. Bakker, "Thin Layer Samples Controlled by Dynamic Electrochemistry," CHIMIA, vol. 69, no. 4, pp. 203-206, 2015.
[83]
M. G. Afshar, G. A. Crespo and E. Bakker, "Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection," Angewandte Chemie International Edition, vol. 54, no. 28, pp. 8110-8113, 2015.
[85]
T. Guinovart et al., "A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements," Analytica Chimica Acta, vol. 821, pp. 72-80, 2014.
[86]
B. Neel et al., "Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations," Journal of Chemical Education, vol. 91, no. 10, pp. 1655-1660, 2014.
[87]
Z. Jarolimova et al., "Chronopotentiometric Carbonate Detection with All-Solid-State lonophore-Based Electrodes," Analytical Chemistry, vol. 86, no. 13, pp. 6307-6314, 2014.
[88]
G. A. Crespo, M. G. Afshar and E. Bakker, "Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes," Journal of Electroanalytical Chemistry, vol. 731, pp. 100-106, 2014.
[89]
M. G. Afshar, G. A. Crespo and E. Bakker, "Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis," Biosensors & bioelectronics, vol. 61, pp. 64-69, 2014.
[90]
M. G. Afshar et al., "Direct Alkalinity Detection with Ion-Selective Chronopotentiometry," Analytical Chemistry, vol. 86, no. 13, pp. 6461-6470, 2014.
[91]
E. Bakker et al., "Environmental Sensing of Aquatic Systems at the University of Geneva," CHIMIA, vol. 68, no. 11, pp. 772-777, 2014.
[92]
M. Cuartero et al., "Exhaustive Thin-Layer Cyclic Voltammetry for Absolute Multianalyte Halide Detection," Analytical Chemistry, vol. 86, no. 22, pp. 11387-11395, 2014.
[93]
X. Xie et al., "Ionophore-Based Ion-Selective Optical NanoSensors Operating in Exhaustive Sensing Mode," Analytical Chemistry, vol. 86, no. 17, pp. 8770-8775, 2014.
[94]
B. Neel et al., "Nitrite-Selective Electrode Based On Cobalt( II) tert-ButylSalophen Ionophore," Electroanalysis, vol. 26, no. 3, pp. 473-480, 2014.
[95]
X. Xie et al., "Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane," Nature Chemistry, vol. 6, no. 3, pp. 202-207, 2014.
[96]
X. Xie et al., "Potassium-selective optical microsensors based on surface modified polystyrene microspheres," Chemical Communications, vol. 50, no. 35, pp. 4592-4595, 2014.
[97]
G. A. Crespo et al., "Thin Layer Coulometry Based on Ion-Exchanger Membranes for Heparin Detection in Undiluted Human Blood," Analytical Chemistry, vol. 86, no. 3, pp. 1357-1360, 2014.
[98]
Z. Jarolimova et al., "All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC," Journal of Electroanalytical Chemistry, vol. 709, pp. 118-125, 2013.
[100]
G. A. Crespo and E. Bakker, "Dynamic electrochemistry with ionophore based ion-selective membranes," RSC Advances, vol. 3, no. 48, pp. 25461-25474, 2013.
[102]
X. Xie, G. A. Crespo and E. Bakker, "Oxazinoindolines as Fluorescent H+ Turn-On Chromoionophores For Optical and Electrochemical Ion Sensors," Analytical Chemistry, vol. 85, no. 15, pp. 7434-7440, 2013.
[104]
[105]
E. Grygolowicz-Pawlak et al., "Potentiometric Sensors with Ion-Exchange Donnan Exclusion Membranes," Analytical Chemistry, vol. 85, no. 13, pp. 6208-6212, 2013.
[106]
T. Guinovart et al., "Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes," The Analyst, vol. 138, no. 18, pp. 5208-5215, 2013.
[107]
G. A. Crespo, M. G. Afshar and E. Bakker, "Direct Detection of Acidity, Alkalinity, and pH with Membrane Electrodes," Analytical Chemistry, vol. 84, no. 23, pp. 10165-10169, 2012.
[108]
M. G. Afshar, G. A. Crespo and E. Bakker, "Direct Ion Speciation Analysis with Ion-Selective Membranes Operated in a Sequential Potentiometric/Time Resolved Chronopotentiometric Sensing Mode," Analytical Chemistry, vol. 84, no. 20, pp. 8813-8821, 2012.
[109]
G. A. Crespo, G. Mistlberger and E. Bakker, "Electrogenerated Chemiluminescence for Potentiometric Sensors," Journal of the American Chemical Society, vol. 134, no. 1, pp. 205-207, 2012.
[110]
[111]
[112]
M. Novell et al., "Paper-Based Ion-Selective Potentiometric Sensors," Analytical Chemistry, vol. 84, no. 11, pp. 4695-4702, 2012.
[113]
G. Mistlberger et al., "Photodynamic ion sensor systems with spiropyran : photoactivated acidity changes in plasticized poly(vinyl chloride)," Chemical Communications, vol. 48, no. 45, pp. 5662-5664, 2012.
[114]
G. A. Crespo, M. G. Afshar and E. Bakker, "Reversible Sensing of the Anticoagulant Heparin with Protamine Permselective Membranes," Angewandte Chemie International Edition, vol. 51, no. 50, pp. 12575-12578, 2012.
[115]
J. Sa et al., "The oxidation state of copper in bimetallic (Pt-Cu, Pd-Cu) catalysts during water denitration," Catalysis Science & Technology, vol. 2, no. 4, pp. 794-799, 2012.
[117]
E. Bakker et al., "Advancing Membrane Electrodes and Optical Ion Sensors," CHIMIA, vol. 65, no. 3, pp. 141-149, 2011.
[119]
G. A. Crespo, G. Mistlberger and E. Bakker, "Electrogenerated chemiluminescence triggered by electroseparation of Ru(bpy)(3)(2+) across a supported liquid membrane," Chemical Communications, vol. 47, no. 42, pp. 11644-11646, 2011.
[120]
A. Duezguen et al., "Nanostructured materials in potentiometry," Analytical and Bioanalytical Chemistry, vol. 399, no. 1, pp. 171-181, 2011.
[121]
F. Xavier Rius-Ruiz et al., "Potentiometric Strip Cell Based on Carbon Nanotubes as Transducer Layer : Toward Low-Cost Decentralized Measurements," Analytical Chemistry, vol. 83, no. 22, pp. 8810-8815, 2011.
[122]
A. P. Washe et al., "Potentiometric Online Detection of Aromatic Hydrocarbons in Aqueous Phase Using Carbon Nanotube-Based Sensors," Analytical Chemistry, vol. 82, no. 19, pp. 8106-8112, 2010.
[125]
G. A. Crespo et al., "Solid-contact pH-selective electrode using multi-walled carbon nanotubes," Analytical and Bioanalytical Chemistry, vol. 395, no. 7, pp. 2371-2376, 2009.
[126]
G. A. Crespo et al., "Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes," Analytical Chemistry, vol. 81, no. 2, pp. 676-681, 2009.
[127]
G. A. Crespo, S. Macho and F. Xavier Rius, "Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers," Analytical Chemistry, vol. 80, no. 4, pp. 1316-1322, 2008.

Kapitel i böcker

[129]
G. Mistlberger, G. A. Crespo and E. Bakker, "Ionophore-based optical sensors," in Ionophore-Based Optical Sensors, Annual Review of Analytical Chemistry Ed., 7th ed. : ANNUAL REVIEWS, 2014, pp. 483-512.

Icke refereegranskade

Artiklar

[130]
[131]
T. Paulraj, G. Crespo and A. Svagan, "Cage-like cellulose nanofiber-based microcapsules for electrochemical and biosensor applications," Abstracts of Papers of the American Chemical Society, vol. 256, 2018.

Avhandlingar

[132]
G. A. Crespo, "Solid Contact Ion Selective Electrodes Based on Carbon Nanotubes," Doctoral thesis Tarragona : Rovira I Virgili, 2010.

Patent

Patent

[136]
G. A. Crespo, E. Bakker and M. Afshar, "Reversible detection of ions with perm-selective membranes," us WO2014016791A2/A3, 2014.
[137]
G. A. Crespo et al., "Electrodes selective for solid contact ions based on carbon nanotubes," es 2310476B1 (2009-11-17), 2007.
Senaste synkning med DiVA:
2024-02-25 01:09:23