Skip to main content

Shyamprasad Natarajan Raja

Profile picture of Shyamprasad Natarajan Raja

POSTDOC

Details

Address
MALVINAS VÄG 10

Researcher

Researcher ID

About me

Shyam is a researcher at the Department of Micro and Nanosystems at KTH. He is developing solid-state nanogap and nanopore platforms for single molecule sensing applications.

Short CV

Shyam obtained his bachelor’s degree in mechanical engineering at IIT Madras in India, and his master's and doctoral degrees from ETH Zurich in Switzerland. He experimentally studied phonon transport in low-dimensional materials such as semiconducting nanowires and graphene during his doctoral studies at ETH Zurich. His research interests include nanomaterials, nanofabrication, microfluidics and sensing technologies.

Awarded Grants

SSF Sweden Israel Research Collaboration 2022-2027

Ragnar Holm Foundation 2018

Publications

1. V. Dubois, S. N. Raja, P. Gehring, S. Caneva, H. S. J. van de Zant, F. Niklaus and G. Stemme.Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices.Nature Communications 9 (2018), 3433.

2. S. N. Raja, D. Osenberg, K. Choi, H. G. Park and D. Poulikakos.Annealing and polycrystallinity effects on the thermal conductivity of CVD graphene monolayers.Nanoscale 9 (2017), 15515–15524.

3. S. N. Raja, R. Rhyner, K. Vuttivorakulchai, M. Luisier and D. Poulikakos. Length Scale of Diffusive Phonon Transport in Suspended Thin Silicon Nanowires.Nano Letters 17 (2017), 276–283.

4. Y. Pan, Y. Tao, G. Qin, Y. Fedoryshyn, S. N. Raja, M. Hu, C. L. Degen and D. Poulikakos.Surface Chemical Tuning of Phonon and Electron Transport in Free-Standing Silicon Nanowire Arrays.Nano Letters 16 (2016), 6364–6370.

5. J. Schneider, P. Rohner, P. Galliker, S. N. Raja, Y. Pan, M. K. Tiwari and D. Poulikakos.Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors.Nanoscale 7 (2015), 9510–9519.

6. Y. Pan, G. Hong, S. N. Raja, S. Zimmermann, M. K. Tiwari and D. Poulikakos.Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium.Applied Physics Letters 106 (2015), 93102.

Keywords: nanofabrication, sensors, nanomaterials, biosensors, graphene, tunneling, nanowires, nanopores, measurement technology, precision measurements.


Courses

Medical Sensors (EK2380), teacher | Course web