The course covers different numerical methods for computing long range sound propagation in non-homogenous media (air and water). Students will implement basic numerical schemes for different environments and analyse and compare the results from different propagation codes.
FSD3136 Numerical Methods for Sound Propagation I 6.0 credits
This course has been discontinued.
Decision to discontinue this course:
No information inserted
Information per course offering
Course offerings are missing for current or upcoming semesters.
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus FSD3136 (Autumn 2018–)Content and learning outcomes
Course contents
Intended learning outcomes
The learning outcomes of the course are that the student should be able to:
- Derive the basic acoustic equations for homogenous media (the linear acoustic equations, the wave equation and Helmholtz equation) from conservation of mass and momentum.
- Give a general overview of different numerical approaches to solve the Helmholtz equation in non homogenous media and describe their basic assumptions and respective strengths and weaknesses.
- Possess basic knowledge of source modelling for computing sound propagation in atmosphere and in underwater applications.
- Implement Helmholtz equation solvers, for instance Ray tracing, Normal modes, Wavenumber integration and Parabolic equation techniques and compare the results to analytical results or benchmark cases.
- Model boundary conditions in atmospheric and under water acoustics and numerical implementations of these in different algorithms.
- Compare different numerical schemes with respect to robustness, computational times, memory allocation and accuracy.
Literature and preparations
Specific prerequisites
MSc within vehicle engineering, physics or an education corresponding to those are required for eligibility.
Literature
Läsanvisningar från följande böcker samt utvalda vetenskapliga artiklar utgör kurslitteraturen:
E. Salomons, Computational atmospheric acoustics, Kleuwer, 2003
F. B. Jensen et al, Computational ocean acoustics, Springer, 2011
Examination and completion
Grading scale
Examination
- TEN1 - Exam, 2.0 credits, grading scale: G
- PRO1 - Project work, 4.0 credits, grading scale: G
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
If the course is discontinued, students may request to be examined during the following two academic years.
The examination of students will be performed by an oral exam and by evaluating hand-in exercises and active participation in the seminars.
Other requirements for final grade
Active participation in the seminars. Passed on oral exam and passed hand-in exercises.
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.