FSG3113 Compressible Aerodynamics 9.0 credits

The course will primarily be based on selected parts of the book by John D. Andersson, Modern Compressible Flow, Mc Graw Hill , 1990, from which may be cited:
"This book deals exclusively with that "marked departure", i.e., it deals with compressible flows, in which the density is not constant. In modern engineering applications, such flows are the rule rather than the exception. A few important examples are the internal flows through rocket and gas turbine engines, high-speed subsonic, transonic, supersonic, and hypersonic wind tunnels, the external flow over modern airplanes designed to cruise faster than 0.3 of the speed of sound, and the flow inside the common internal combustion reciprocating engine. The purpose of this book is to develop the fundamental concepts of compressible flow, and to illustrate their use."
Information for research students about course offerings
Period 4 and 1. See KTH-schedule for undergraduate course
SG2215 and SG2219.
Choose semester and course offering
Choose semester and course offering to see information from the correct course syllabus and course offering.
Content and learning outcomes
Course contents
For an inviscid, compressible gas the students should be able to
- calculate pressure, velocity and temperature for quasi one-dimensional, stationary, isentropic flow
- calculate changes of pressure, velocity and temperature over normal and oblique shock waves
- calculate changes of pressure, velocity and temperature in simple expansion waves
- calculate pressure, velocity and temperature for unsteady, one-dimensional, non-linear waves
- calculate the flow field in linear theory for subsonic and supersonic flow around bodies
- understand how pressure and drag on a body changes in transsonic flow
- derive the conservation equations governing the flow of compressible fluids in boundary layers
- derive solutions to the boundary layer equations for some cases demonstrating the main features of compressible flow in a boundary layer
Intended learning outcomes
Finishing this course the student should know how to:
- derive the conservation laws of mass, momentum and energy of inviscid, compressible flow and apply them to various fluid dynamical problems to e.g.
- analyse the interaction of forces between solid boundaries and flowing gases from the basic principles of compressible flow
- analyse the energy conversion process in a flowing gas from the thermodynamic principles of isentropic and irreversible flow respectively
- interpret results from performed experiments - demonstrate a physical understanding of the mathematical formulas derived
- give a physical description of the special effects appearing in hypersonic flows.
- explain the consequences of the effects of compressibility on the flow in a viscous boundary layer
Course disposition
Literature and preparations
Specific prerequisites
Basic courses at M, P, T or F and one of SG1217, SG1220, SG2223, SG2214 or equivalent courses.
Recommended prerequisites
The course assumes that the contents of the course SG1217, SG1220, SG2223 or SG2214, or something similar, have been studied.
Equipment
Literature
Andersson, Modern Compressible Flow, With Historical Perspective, Mc Graw Hill, 2003, ISBN 0-07-242443-5.
Selected paragraphs of: Transition, Turbulence and Combustion modelling, Lecture notes from the 2nd ERCOFTAC Summerschool held in Stockholm, 10-16 June, 1998. Edited by A. Hanifi, P.H. Alfredsson, A.V. Johansson and D.S. Henningsson.
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- INL1 - Assignment, 1.5 credits, grading scale: P, F
- INL2 - Assignment, 1.5 credits, grading scale: P, F
- INL3 - Assignment, 0.5 credits, grading scale: P, F
- LAB1 - Lab exercise, 0.7 credits, grading scale: P, F
- LAB2 - Lab exercise, 0.8 credits, grading scale: P, F
- TEN1 - Oral exam, 3.0 credits, grading scale: P, F
- TEN2 - Oral exam, 1.0 credits, grading scale: P, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
INL1 Assignment 1,5 hp (P, F)
INL2 Assignment 1,5 hp (P, F)
INL3 Assignment 0,5 hp (P, F)
LAB1 Laboration 0,7 hp (P, F)
LAB2 Laboration 0,8 hp (P, F)
TEN1 Oral exam 3,0 hp (P, F)
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.
Further information
Course web
Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.
Course web FSG3113Offered by
Main field of study
Education cycle
Add-on studies
Contact
Supplementary information
This course for graduate students is given parallel with SG2215 Compressible flow and partly SG2219 Advanced Compressible flow.