Communication-Computation Efficient Federated Learning over Wireless Networks
Tid: Fr 2023-04-21 kl 13.00
Plats: Sten Velander, Teknikringen 33, Stockholm
Språk: Engelska
Ämnesområde: Elektro- och systemteknik
Licentiand: Afsaneh Mahmoudi , Elektroteknik
Granskare: Docent Nikolaos Pappas, Linköpings universitet
Huvudhandledare: Professor Carlo Fischione, Nätverk och systemteknik; Dr. José Mairton Barros da Silva Jr., Nätverk och systemteknik
QC 20230310
Abstract
Med introduktionen av Internet of Things~(IoT) och 5G~cellulära nätverk, kommer edge computing avsevärt att lindra bristerna på tjänstekvaliteten hos molnberäkningar. Med framstegen inom edge computing har maskininlärning~(ML) spelat en betydande roll i att analysera data som produceras av IoT-enheter. Sådana framsteg har huvudsakligen möjliggjort ML-proliferation i distribuerade optimeringsalgoritmer. Dessa algoritmer syftar till att förbättra tränings- och testprestanda för förutsägelse- och slutledningsuppgifter, såsom bildklassificering. Men de senaste ML-algoritmerna kräver enorma kommunikations- och beräkningsresurser som inte är lätt tillgängliga på trådlösa enheter. Följaktligen är ett betydande behov att utöka ML-algoritmer till scenarier för trådlös kommunikation för att klara av resursbegränsningarna hos enheterna och nätverken.
Federated learning~(FL) är en av de mest framträdande algoritmerna med data fördelade över enheter. FL minskar kommunikationskostnader genom att undvika datautbyte mellan trådlösa enheter och servern. Istället utför varje trådlös enhet några lokala beräkningar och kommunicerar de lokala parametrarna till servern med hjälp av trådlös kommunikation. Följaktligen upplever varje kommunikationsiteration av FL kostnader som beräkning, latens, kommunikationsresursanvändning, bandbredd och energi. Eftersom enheternas kommunikations- och beräkningsresurser är begränsade kan det på grund av resursbristen hindra att fullfölja utbildningen av FL. Huvudmålet med denna avhandling är att utveckla kostnadseffektiva metoder för att lindra resursbegränsningarna för enheter i FL-träning.
I det första kapitlet av avhandlingen överblickar vi ML och diskuterar relevanta kommunikations- och beräkningseffektiva arbeten för att träna FL-modeller. Därefter genomförs en omfattande litteraturgenomgång av kostnadseffektiva FL-metoder, och begränsningarna för befintlig litteratur inom detta område identifieras. Vi presenterar sedan det centrala fokuset i vår forskning, vilket är ett kausalt synsätt som eliminerar behovet av framtida FL-information vid utformning av kommunikations- och beräkningseffektiv FL. Slutligen sammanfattar vi de viktigaste bidragen från varje artikel i avhandlingen.
I det andra kapitlet presenterar avhandlingen de artiklar som den bygger på i deras ursprungliga publicerings- eller inlämningsformat. Ett multi-objektiv optimeringsproblem, som inkluderar FL-förlust- och iterationskostnadsfunktioner, föreslås där det trådlösa ALOHA-protokollet med slitsar reglerar kommunikationen mellan enheter och servern. Effekten av konfliktnivån i CSMA/CA på den kausala lösningen av den föreslagna optimeringen undersöks också. Dessutom utökas problemet med optimering av flera mål till att täcka allmänna scenarier inom trådlös kommunikation, inklusive konvexa och icke-konvexa förlustfunktioner. Nya resultat jämförs med välkända kommunikationseffektiva metoder som LAQ för att ytterligare förbättra kommunikationseffektiviteten i FL över trådlösa nätverk.
Med introduktionen av Internet of Things~(IoT) och 5G~cellulära nätverk, kommer edge computing avsevärt att lindra bristerna på tjänstekvaliteten hos molnberäkningar. Med framstegen inom edge computing har maskininlärning~(ML) spelat en betydande roll i att analysera data som produceras av IoT-enheter. Sådana framsteg har huvudsakligen möjliggjort ML-proliferation i distribuerade optimeringsalgoritmer. Dessa algoritmer syftar till att förbättra tränings- och testprestanda för förutsägelse- och slutledningsuppgifter, såsom bildklassificering. Men de senaste ML-algoritmerna kräver enorma kommunikations- och beräkningsresurser som inte är lätt tillgängliga på trådlösa enheter. Följaktligen är ett betydande behov att utöka ML-algoritmer till scenarier för trådlös kommunikation för att klara av resursbegränsningarna hos enheterna och nätverken.
Federated learning~(FL) är en av de mest framträdande algoritmerna med data fördelade över enheter. FL minskar kommunikationskostnader genom att undvika datautbyte mellan trådlösa enheter och servern. Istället utför varje trådlös enhet några lokala beräkningar och kommunicerar de lokala parametrarna till servern med hjälp av trådlös kommunikation. Följaktligen upplever varje kommunikationsiteration av FL kostnader som beräkning, latens, kommunikationsresursanvändning, bandbredd och energi. Eftersom enheternas kommunikations- och beräkningsresurser är begränsade kan det på grund av resursbristen hindra att fullfölja utbildningen av FL. Huvudmålet med denna avhandling är att utveckla kostnadseffektiva metoder för att lindra resursbegränsningarna för enheter i FL-träning.
I det första kapitlet av avhandlingen överblickar vi ML och diskuterar relevanta kommunikations- och beräkningseffektiva arbeten för att träna FL-modeller. Därefter genomförs en omfattande litteraturgenomgång av kostnadseffektiva FL-metoder, och begränsningarna för befintlig litteratur inom detta område identifieras. Vi presenterar sedan det centrala fokuset i vår forskning, vilket är ett kausalt synsätt som eliminerar behovet av framtida FL-information vid utformning av kommunikations- och beräkningseffektiv FL. Slutligen sammanfattar vi de viktigaste bidragen från varje artikel i avhandlingen.
I det andra kapitlet presenterar avhandlingen de artiklar som den bygger på i deras ursprungliga publicerings- eller inlämningsformat. Ett multi-objektiv optimeringsproblem, som inkluderar FL-förlust- och iterationskostnadsfunktioner, föreslås där det trådlösa ALOHA-protokollet med slitsar reglerar kommunikationen mellan enheter och servern. Effekten av konfliktnivån i CSMA/CA på den kausala lösningen av den föreslagna optimeringen undersöks också. Dessutom utökas problemet med optimering av flera mål till att täcka allmänna scenarier inom trådlös kommunikation, inklusive konvexa och icke-konvexa förlustfunktioner. Nya resultat jämförs med välkända kommunikationseffektiva metoder som LAQ för att ytterligare förbättra kommunikationseffektiviteten i FL över trådlösa nätverk.