Image Analysis and Computer Vision

Innehåll visas utifrån dina val

Om du inte hittar någon sida, schemahändelse eller nyhet på din kurswebb kan det bero på att du inte ser den kursomgången/gruppen inom kursen som innehållet tillhör.

Veta mer om din kurswebb

Din kurswebb är sidorna för en kurs du prenumererar på. Du väljer sedan vilka omgångar/grupper inom kursen du vill ha information från. Är du registrerad på en kursomgång sköts prenumeration och val av kursomgäng automatiskt åt dig. Vill du ändra något av detta gör du det under Mina inställningar.

När du är inloggad på din kurswebb ser du:
  • Kursöversikt, nyheter och schema med information som är filtrerat utifrån dina valda omgångar/grupper inom kursen
  • Allmänna sidor för hela kursen
  • Kurswikin som är sidor som alla, lärare och studenter, kan skapa och redigera
  • Sidor som hör till de omgångar/grupper inom kursen du valt eller som valts för dig

Log in to your course web

You are not logged in KTH, so we cannot customize the content.

Humans use vision as a primary source to obtain information about the outside world. The goal of computer vision is to implement similar functionalities in machines by developing algorithms and computational models to automatically process and extract information from digital image data. This course offers an introduction to the field that has grown considerably in recent years, much due to the decreased cost of digital photography and the increasing amount of visual information on Internet and elsewhere. Application areas include e.g. robot vision, medical imaging, automated inspection, three-dimensional modeling, human-computer interaction, image compression and interpretation of aerial and satellite images.

In the course, you will initially learn basic image operations to enhance and extract information from digital images. Examples are gray-level transformations, filtering techniques and detection of features such as corners, edges and regions (segmentation). We will also study methods to derive three-dimensional information about the outside world on the basis of visual information, using cues such as texture, shading, stereo and motion. In terms of robotics, we will e.g. look at how to make a robot avoid collisions by just computing a simple descriptor directly from raw image data. We will further study methods for object recognition and talk about their complexities and inherent limitations. Computer vision is a strongly inter-disciplinary subject with strong connections to theories on biological and human vision, as well as to machine learning and other related areas.

Teachers

Feedback News