Till KTH:s startsida Till KTH:s startsida

News feed

Log in to your course web

You are not logged in KTH, so we cannot customize the content.

In the News feed, you find updates for pages, schedule and posts from teachers (when aimed also at earlier registered students).

March 2014
under VT 2014

Viktoria Fodor created page 3 September 2013

Viktoria Fodor edited 20 January 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction 

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

Ioannis Glaropoulos edited 3 February 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction

Lecture 2 - slides (pdf)

Lecture 3 - slides (pdf)

Lecture 4 - slides (pdf)¶

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

Viktoria Fodor edited 5 February 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction

Lecture 2 - slides (pdf)

Lecture 3 - slides (pdf)

Lecture 4 - slides (pdf)

Lecture 5-7 - slides (pdf)¶

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

Viktoria Fodor edited 17 February 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction

Lecture 2 - slides (pdf)

Lecture 3 - slides (pdf)

Lecture 4 - slides (pdf)

Lecture 5-7 - slides (pdf)

Lecture 7 (M/M/m//C) - slides (pdf) (new)¶

Lecture 8 - slides (pdf)

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

Viktoria Fodor edited 20 February 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction

Lecture 2 - slides (pdf)

Lecture 3 - slides (pdf)

Lecture 4 - slides (pdf)

Lecture 5-7 - slides (pdf)

Lecture 7 (M/M/m//C) - slides (pdf) (new)

Lecture 8 - slides (pdf)

Lecture 9 - slides (pdf)¶

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

Viktoria Fodor edited 24 February 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction

Lecture 2 - slides (pdf)

Lecture 3 - slides (pdf)

Lecture 4 - slides (pdf)

Lecture 5-7 - slides (pdf)

Lecture 7 (M/M/m//C) - slides (pdf) (new)

Lecture 8 - slides (pdf)

Lecture 9 - slides (pdf)

Lecture 10 - slides (pdf)¶

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

Viktoria Fodor edited 4 March 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction

Lecture 2 - slides (pdf)

Lecture 3 - slides (pdf)

Lecture 4 - slides (pdf)

Lecture 5-7 - slides (pdf)

Lecture 7 (M/M/m//C) - slides (pdf) (new)

Lecture 8 - slides (pdf)

Lecture 9 - slides (pdf)

Lecture 10 - slides (pdf) - updated

Lecture 11 - slides (pdf)

Lecture 12 - slides (pdf)

Problems for lecture and recitation 12

Solutions for problems 1 and 2¶

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

Viktoria Fodor edited 5 March 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction

Lecture 2 - slides (pdf)

Lecture 3 - slides (pdf)

Lecture 4 - slides (pdf)

Lecture 5-7 - slides (pdf)

Lecture 7 (M/M/m//C) - slides (pdf) (new)

Lecture 8 - slides (pdf)

Lecture 9 - slides (pdf)

Lecture 10 - slides (pdf) - updated

Lecture 11 - slides (pdf)

Lecture 12 - slides (pdf)

Problems for lecture and recitation 12

Solutions for problems 1 and 2

Solutions for problems 3 to 5¶

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

Viktoria Fodor edited 11 March 2014

Lecture slides Lecture slides are uploaded a couple of days before the lecture.

Lecture 1: Introduction

Lecture 2 - slides (pdf)

Lecture 3 - slides (pdf)

Lecture 4 - slides (pdf)

Lecture 5-7 - slides (pdf)

Lecture 7 (M/M/m//C) - slides (pdf) (new)

Lecture 8 - slides (pdf)

Lecture 9 - slides (pdf)

Lecture 10 - slides (pdf) - updated

Lecture 11 - slides (pdf)

Lecture 12 - slides (pdf)

Problems for lecture and recitation 12

Solutions for problems 1 and 2

Solutions for problems 3 to 5 - solution 5(a) corrected.

Lecture topics Below we list the approximate lecture topics and the related reading suggestions. (V1:1-3, 5-7 means the Virtamo notes, section 1: pages 1 to 3 and 5 to 7; N1.1-3 means the Nain notes sections 1.1 to 1.3. All ranges are inclusive final page or section).


* Introduction to queuing systems: course overview, queuing systems, stochastic processes recall. Reading: probability theory and transforms - basics (V1:1-21, V2:1-19,V3:1-19, V9:1-7).  
* Poisson process and Markov chains in continuous time (V7:1-15, V4:1-6, V5:1-8, N1.1).
* Birth-death process, Poisson process, Markovian queuing model, Little's theorem (V6:1-9, V8:1-7, V9:1-7, N1.2-3)
* M/M/1 (V12:1-12, N2.1).
* M/M/m/m - loss system (Erlang) (V10:1-10, N2.4).
* M/M/m - wait system (V12:13-20, N2.3-7).
* M/M/m/*/n - finite population systems (Engset) (V11:1-11).
* Semi-Markovian queuing systems: Er, Hr, method of stages (Kleinrock).
* M/G/1-system, Pollaczek-Khinchine mean value and transform equations (V13:1-25, N2.8).
* Priority service and service vacations (V14:1-10, N3).
* Open queuing networks (V15:1-5,9-12, N4.1).
* Course summary

 
February 2014
under VT 2014

Viktoria Fodor created page 3 September 2013

Ioannis Glaropoulos edited 28 January 2014

Recitation material

Problems for all recitations (pdf)

Solutions for all recitations (pdf)

Detailed Solutions to the exercises (to be updated atbefore each recitation)

Recitation plan

Chapter numbers refer to the problem set chanpter in the course compendium. In same cases we also give the set of problems discussed on the recitation.

R1 Probability theory - overview

R2 Probability theory - problems (Ch. 1, Problems to be considered on the recitation: 2,3,4,(5),6)

R3 Markov chains (Ch. 3, Problems to be considered on the recitation: 2,3,4,6)

R4 Queuing systems (Ch. 4), M/M/1 (Ch. 5)

R5 M/M/m/m loss system (Ch. 6) + Exercise 5.7

R6 M/M/m (Ch. 7, to be solved on the recitation: 7.2, 7.6 and Ex. 8 from the exam problem set)

R7 M/M/m/S and M/M/m//K (Ch. 8, to be solved on the recitation: Ex. 6.6 and 8.6)

R8 Method of stages (Ch. 9 : 9.1, 9.2, two extra exercise problems)

R9 M/G/1 (Ch. 10: 10.1, 10.2, 10.4)

R10 M/G/1 with vacation and priorities (Ch.11: exercise 11.5, exercise 11.3, the problem 2 from the exam in december 2010. )

R11 Queuing networks (Ch. 12: one extra exercise problem, 12.1, 12.3, 12.2 )

R12 Course summary, example exam problems

Exam problems solved on the recitations 

During the second part of the course we will solve an exam problem on most of the recitations,  to prepare for the exam. Try to solve the problem on your own before coming to the recitation, then you will benefit more from the discussion there.

 

  

Ioannis Glaropoulos edited 12 February 2014

Recitation material

Problems for all recitations (pdf)

Solutions for all recitations (pdf)

Detailed Solutions to the exercises (to be updated BEFORE each recitation)

Recitation plan

Chapter numbers refer to the problem set chanpter in the course compendium. In same cases we also give the set of problems discussed on the recitation.

R1 Probability theory - overview

R2 Probability theory - problems (Ch. 1, Problems to be considered on the recitation: 2,3,4,(5),6)

R3 Markov chains (Ch. 3, Problems to be considered on the recitation: 2,3,4,6)

R4 Queuing systems (Ch. 4), M/M/1 (Ch. 5)

R5 M/M/m/m loss system (Ch. 6) + Exercise 5.7

R6 M/M/m (Ch. 7, to be solved on the recitation: 7.2, 7.6 and Ex. 8 from the exam problem set)

R7 M/M/m/S and M/M/m//K (Ch. 8, to be solved on the recitation: Ex. 6.6 and 8.6)

R8 Method of stages (Ch. 9 : 9.1, 9.2, two extra exercise problems)

R9 M/G/1 (Ch. 10: 10.1, 10.2, 10.4)

R10 M/G/1 with vacation and priorities (Ch.11: exercise 11.5, exercise 11.3, the problem 2 from the exam in december 2010. )

R11 Queuing networks (Ch. 12: one extra exercise problem, 12.1, 12.3, 12.2 )

R12 Course summary, example exam problems

Exam problems solved on the recitations 

During the second part of the course we will solve an exam problem on most of the recitations,  to prepare for the exam. Try to solve the problem on your own before coming to the recitation, then you will benefit more from the discussion there.

 

  

Ioannis Glaropoulos edited 13 February 2014

Recitation material

Problems for all recitations (pdf)

Solutions for all recitations (pdf)

Detailed Solutions to the exercises (to be updated BEFORE each recitation)

Recitation plan

Chapter numbers refer to the problem set chanpter in the course compendium. In same cases we also give the set of problems discussed on the recitation.

R1 Probability theory - overview

R2 Probability theory - problems (Ch. 1, Problems to be considered on the recitation: 2,3,4,(5),6)

R3 Markov chains (Ch. 3, Problems to be considered on the recitation: 2,3,4,6)

R4 Queuing systems (Ch. 4), M/M/1 (Ch. 5)

R5 M/M/m/m loss system (Ch. 6) + Exercise 5.7

R6 M/M/m (Ch. 7, to be solved on the recitation: 7.2, 7.6 and Ex. 8 from the exam problem set)

R7 M/M/m/S and M/M/m//K (Ch. 8, to be solved on the recitation: Ex. 6.6 and 8.6)

R8 Method of stages (Ch. 9 : 9.1, 9.2, two extra exercise problems)

R9 M/G/1 (Ch. 10: 10.1, 10.2, 10.4)

R10 M/G/1 with vacation and priorities (Ch.11: exercise 11.5, exercise 11.3, the problem 2 from the exam in december 2010. )

R11 Queuing networks (Ch. 12: one extra exercise problem, 12.1, 12.3, 12.2 )

R12 Course summary, example exam problems

Exam problems solved on the recitations 

During the second part of the course we will solve an exam problem on most of the recitations,  to prepare for the exam. Try to solve the problem on your own before coming to the recitation, then you will benefit more from the discussion there.

 

  

 
September 2013
under VT 2014

Viktoria Fodor created page 3 September 2013

 
under VT 2014

Viktoria Fodor created page 3 September 2013