Introduction to Biomechanics

Innehåll visas utifrån dina val

Om du inte hittar någon sida, schemahändelse eller nyhet på din kurswebb kan det bero på att du inte ser den kursomgången/gruppen inom kursen som innehållet tillhör.

Veta mer om din kurswebb

Din kurswebb är sidorna för en kurs du prenumererar på. Du väljer sedan vilka omgångar/grupper inom kursen du vill ha information från. Är du registrerad på en kursomgång sköts prenumeration och val av kursomgäng automatiskt åt dig. Vill du ändra något av detta gör du det under Mina inställningar.

När du är inloggad på din kurswebb ser du:
  • Kursöversikt, nyheter och schema med information som är filtrerat utifrån dina valda omgångar/grupper inom kursen
  • Allmänna sidor för hela kursen
  • Kurswikin som är sidor som alla, lärare och studenter, kan skapa och redigera
  • Sidor som hör till de omgångar/grupper inom kursen du valt eller som valts för dig

Log in to your course web

You are not logged in KTH, so we cannot customize the content.

Content

The course provides the foundation of cardiovascular biomechanics from the organ to the tissue level. A quantitative approach to human physiology from the biomedical engineering perspective is presented, where structural and hemodynamic aspects are addressed. In-vitro experimental and analytic tools are developed and used to solve problems in cardiovascular biomedical engineering. Techniques include Finite Element (FE) modeling, model parameter identification, non-linear continuum mechanics, constitutive descriptions of passive and active properties of blood vessels, Newtonian and non-Newtonian descriptions of blood.

Prerequisites

Basic course in solid mechanics (for instance SE1010, SE1020 or SE1055) and a Finite Element (FE) course (for instance SE1025).

Key Learning objectives

After the course, the participants should be able to

  1. Understand the basics of vascular physiology
  2. Model a particular bioengineering problems by selecting appropriate modeling assumptions
  3. Understand the purpose, function, implication and limitation of biomechanical modeling
  4. Achieve a theoretical understanding of linear and non-linear continuum mechanics
  5. Solve a particular problem by using either analytical approaches or the FE method
  6. Combine and integrate different solution strategies to address more challenging problems 
  7. Achieve a practical understanding in applying the FE method as demonstrated by solving typical problems of bioengineering interest
  8. Present, analyze and explain derived results in a clear and causal way

Course structure and teachers

The course consists of 14 lectures, 8 tutorials as well as 2 experimental and 2 computational laboratory work tasks. Details about the different course parts are given below and latest information is published at the course website at KTH Social. Course material is handed-out continuously during the course.Teachers are:

Lectures and experimental labs:   T.Christian Gasser, gasser@kth.se

Tutorials and computer labs:         Chris Miller, chrismi@kth.se, 790 7549

Suggested Course literature

  • Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. Jay D. Humphrey, Springer 2002.
  • Biomechanics. Concepts and Computation. Cees Oomens, Marcel Brekelmans, and Frank Baaijens, Cambridge University Press, 2009.
  • Nonlinear continuum mechanics for finite element analysis. J Bonet and RD Wood. Cambridge University Press, 1997.

Teachers

No activity in the past month. Go to News feed to see older activity

Feedback News