Till innehåll på sidan

Modeling and optimization of least-cost corridors

Tid: Ti 2021-03-30 kl 10.00

Plats: Videolänk https://kth-se.zoom.us/j/65902078695, Du som saknar dator /datorvana kontakta Rachel Mundeli Murekatete rachelmm@kth.se / Use the e-mail address if you need technical assistance, Stockholm (English)

Ämnesområde: Geodesi och geoinformatik, Geoinformatik

Licentiand: Lindsi Seegmiller , Geoinformatik

Granskare: Docent Kai-Florian Richter, Umeå universitet

Huvudhandledare: Docent Takeshi Shirabe, Geoinformatik

Abstract

Med tanke på ett rutnät av celler, som vart och ett har ett värde som indikerar dess kostnad per areaenhet, är en variant av det billigaste banproblemet att hitta en korridor med en specificerad bredd som förbinder två terminaler så att dess kostnadsviktade område minimeras. Det finns en beräkningseffektiv metod för att hitta sådana korridorer, men som är fallet med konventionella rasterbaserade lägsta kostnadsspår är deras inkrementella orienteringar begränsade till ett fast antal (vanligtvis åtta ortogonala och diagonala) riktningar, och därför, oavsett nätupplösning tenderar de att avvika från de tänkbara på det euklidiska planet. Dessutom är dessa metoder begränsade till problem som finns i tvådimensionella nät och ignorerar den ständigt ökande tillgängligheten och nödvändigheten av tredimensionell rasterbaserad geografisk data. Denna avhandling försöker ta itu med problemen som belyses ovan genom att utforma och testa korridoralgoritmer till lägsta kostnad. Först föreslås en metod för att lösa det tvådimensionella rasterbaserade problemet med billigaste korridorer med minskad förvrängning genom att anpassa en distorsionsminskningsteknik som ursprungligen utformades för billigaste vägar och tillämpa den på en effektiv men distorsionsbenägen billigaste korridoralgoritm. Den föreslagna metoden för distorsionsminskning är i teorin garanterad att generera inte mindre exakta lösningar än den befintliga i polynomtid och i praktiken förväntas generera mer exakta lösningar, vilket demonstreras experimentellt med syntetiska och verkliga data. En korridor modelleras sedan på ett tredimensionellt rutnät av kostnadsvägda kubikceller eller voxels som en sekvens av uppsättningar av voxels, kallade "stadsdelar", som är ordnade i en 26-hedoral form, designar en heuristisk metod för att hitta en sekvens av sådana stadsdelar som sveper den lägsta kostnadsviktade volymen och testar dess prestanda med datorgenererade slumpmässiga data. Resultaten visar att metoden hittar en låg kostnad, om inte minst kostnad, korridor med en specificerad bredd i ett tredimensionellt kostnadsnät och har en rimlig effektivitet eftersom dess komplexitet är O (n2) där n är antalet voxlar i ingångskostnadsnätet och är oberoende av korridorbredd En stor nackdel är att korridoren som hittas kan korsa sig själv, vilket ofta inte bara är en oönskad kvalitet utan gör uppskattningen av dess kostnadsviktade volym felaktig.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291279