Skip to main content
Till KTH:s startsida Till KTH:s startsida

Publications by Håkan Jönsson

Peer reviewed

Articles

[1]
M. Trossbach et al., "High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning," SLAS TECHNOLOGY, vol. 28, no. 6, pp. 423-432, 2023.
[3]
M. Trossbach et al., "A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator," Micromachines, vol. 13, no. 11, pp. 1823-1823, 2022.
[4]
H. Yan et al., "Immune-Modulating Mucin Hydrogel Microdroplets for the Encapsulation of Cell and Microtissue," Advanced Functional Materials, vol. 31, no. 42, pp. 2105967-2105967, 2021.
[7]
K. Langer and H. Jönsson, "Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics," SLAS TECHNOLOGY, vol. 25, no. 2, pp. 111-122, 2020.
[8]
S. Björk and H. Jönsson, "Microfluidics for cell factory and bioprocess development," Current Opinion in Biotechnology, vol. 55, pp. 95-102, 2019.
[9]
G. Wang et al., "RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in Saccharomyces cerevisiae," Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 19, pp. 9324-9332, 2019.
[10]
S. Siedler et al., "Development of a Bacterial Biosensor for Rapid Screening of Yeast p-Coumaric Acid Production," ACS Synthetic Biology, vol. 6, no. 10, pp. 1860-1869, 2017.
[11]
P. K. Periyannan Rajeswari et al., "Multiple pathogen biomarker detection using an encoded bead array in droplet PCR," Journal of Microbiological Methods, vol. 139, pp. 22-28, 2017.
[12]
P. K. Periyannan Rajeswari, H. N. Jönsson and H. Andersson Svahn, "Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation," Electrophoresis, 2016.
[13]
[15]
A. Fornell et al., "Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis," Analytical Chemistry, vol. 87, no. 20, pp. 10521-10526, 2015.
[16]
[17]
[18]
M. A. Khorshidi et al., "Automated analysis of dynamic behavior of single cells in picoliter droplets," Lab on a Chip, vol. 14, no. 5, pp. 931-937, 2014.
[19]
S. L. Sjöström et al., "High-throughput screening for industrial enzyme production hosts by droplet microfluidics," Lab on a Chip, vol. 14, no. 4, pp. 806-813, 2014.
[21]
S. L. Sjöström, H. . N. Jönsson and H. Andersson Svahn, "Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors," Lab on a Chip, vol. 13, no. 9, pp. 1754-1761, 2013.
[22]
H. Jönsson et al., "A Homogeneous Assay for Protein Analysis in Droplets by Fluorescence Polarization," Electrophoresis, vol. 33, no. 3, pp. 436-439, 2012.
[23]
H. N. Jönsson and H. Andersson Svahn, "Droplet microfluidics-A tool for single-cell analysis," Angewandte Chemie International Edition, vol. 51, no. 49, pp. 12176-12192, 2012.
[24]
H. Jönsson and H. Svahn Andersson, "Tröpfchen-Mikrofluidik für die Einzelzellanalyse," Angewandte Chemie, vol. 124, no. 49, pp. 12342-12359, 2012.
[25]
H. N. Jönsson and H. Andersson-Svahn, "Droplet microfluidics : A tool for protein engineering and analysis," Lab on a Chip, vol. 11, no. 24, pp. 4144-4147, 2011.
[26]
H. Jönsson, M. Uhlén and H. Andersson-Svahn, "Droplet size based separation by deterministic lateral displacement : separating droplets by cell-induced shrinking," Lab on a Chip, vol. 11, no. 7, pp. 1305-1310, 2011.
[27]
A. Llobera et al., "Monolithic PDMS passband filters for fluorescence detection," Lab on a Chip, vol. 10, no. 15, pp. 1987-1992, 2010.
[28]
H. Jönsson et al., "Detection and Analysis of Low-Abundance Cell-Surface Biomarkers Using Enzymatic Amplification in Microfluidic Droplets," Angewandte Chemie International Edition, vol. 48, no. 14, pp. 2518-2521, 2009.

Conference papers

[29]
M. Trossbach et al., "3D microspheroid assembly characterization in microfluidic droplets by deep learning & automated image analysis," in Proceedings MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2021, pp. 1663-1664.
[30]
H. E. Parker et al., "Digital detection and quantification of SARS-CoV-2 in a droplet microfluidic all-fiber device," in Proceedings MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2021, pp. 1047-1048.
[31]
H. E. Parker et al., "Digital droplet microfluidic integrated Lab-in-a-fiber detection of SARS-CoV-2 viral RNA," in 2021 Conference On Lasers And Electro-Optics Europe & European Quantum Electronics Conference (CLEO/EUROPE-EQEC), 2021.
[32]
H. E. Parker et al., "Digital droplet microfluidic integrated lab-in-a-fiber detection of SARS-CoV-2 viral RNA," in Optics InfoBase Conference Papers, 2021.
[33]
H. E. Parker et al., "Viral detection and quantification in a digital droplet microfluidic lab-in-a-fiber device," in Micro-structured and specialty optical fibres VII, 2021.
[34]
M. Urrutia Iturritza et al., "An automated microfluidic diagnostics pipeline for infectious disease detection in low resource settings," in MicroTAS 2020 - 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2020, pp. 1197-1198.
[35]
S. Björk, M. Schappert and H. Jönsson, "Droplet microfluidic microcolony sorting by fluorescence area for high throughput, yield-based screening of triacyl glycerides in S. Cerevisiae," in MicroTAS 2020 - 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2020, pp. 1015-1016.
[36]
K. Langer et al., "A conversational robotic lab assistant for automated microfluidic 3d microtissue production," in 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019, 2019, pp. 888-889.
[37]
S. Siedler et al., "High throughput droplet sorting of yeast for p-Coumaric acid production detected by co-encapsulated E. coli biosensor bacteria," in 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016, 2016, pp. 551-552.
[38]
A. Fornell et al., "Particle enrichment in droplet acoustofluidics," in Micronano System Workshop (MSW 2016), Lund, Sweden, May 17-18 2016, 2016.
[39]
A. Fornell et al., "Particle enrichment in two-phase microfluidic systems using acoustophoresis," in Acoustofluidics 2016, Kongens Lyngby, Denmark, September 22-23 2016, 2016.
[40]
A. Fornell et al., "Acoustic focusing of microparticles in two-phase systems - Towards cell enrichment or medium exchange in droplets," in MicroTAS 2015 - 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2015, pp. 1026-1028.
[41]
S. M. Björk et al., "Tuning microfluidic cell culture conditions for droplet based screening by metabolite profiling," in MicroTAS 2015 - 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2015, pp. 1377-1379.
[42]
S. Sjöström et al., "Micro-droplet based directed evolution outperforms conventional laboratory evolution," in 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2014, 2014, pp. 169-171.
[43]
S. Sjöström et al., "Droplet based directed evolution of yeast cell factories doubles production of industrial enzymes," in 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013, 2013, pp. 1270-1272.
[44]
M. A. Khorshidi et al., "Dynamic behavior analysis of single cells using droplet microfluidics," in 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013, 2013, pp. 1674-1676.
[45]
E. Weibull et al., "Interfacing picoliter droplet microfluidics with addressable μl-compartments using FACS," in 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013, 2013, pp. 1632-1634.
[46]
L. Söderberg, H. Jönsson and H. Andersson Svahn, "Parallel cDNA synthesis from thousands of individually encapsulated cancer cells : Towards large scale single cell gene expression analysis," in 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013, 2013, pp. 1737-1739.
[47]
S. L. Sjöström, H. N. Jönsson and H. A. Svahn, "Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors," in Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012, 2012, pp. 172-174.
[48]
H. Jönsson et al., "Microfluidic droplet based enzyme variant screening : Towards improved enzymes for industrial applications," in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011, 2011, pp. 179-181.
[49]
H. Jönsson et al., "A homogeneous assay for biomolecule interaction analysis in droplets by flourescence polarization," in 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010 : Volume 3, 2010, pp. 1802-1804.
[50]
H. Jönsson, M. Uhlén and H. Andersson-Svahn, "Deterministic lateral displacement device for droplet separation by size - Towards rapid clonal selection based on droplet shrinking," in 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010 : Volume 2, 2010, pp. 1355-1357.
[51]
H. Joensson et al., "Concurrent multi-sample analysis of low expressed biomarkers on single human cells by enzymatically amplified immunodetection in droplets," in 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference, 2008, pp. 1287-1289.

Chapters in books

[52]
M. Huang, H. Jönsson and J. Nielsen, "High-throughput microfluidics for the screening of yeast libraries," in Synthetic Metabolic Pathways : Methods and Protocols, : Humana Press, 2018, pp. 307-317.

Non-peer reviewed

Articles

[53]
M. Huang et al., "Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast," Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 34, pp. E4689-E4696, 2015.

Theses

[54]
H. Jönsson, "Droplet microfluidics for high throughput biological analysis," Doctoral thesis Stockholm : KTH Royal Institute of Technology, Trita-BIO-Report, 2011:3, 2011.

Other

[64]
S. L. Sjöström, H. N. Jönsson and H. Andersson Svahn, "High-­throughput screening for improved enzymes in environments lethal to host cells," (Manuscript).
Latest sync with DiVA:
2024-05-27 02:16:31