Till innehåll på sidan
Till KTH:s startsida Till KTH:s startsida

Quantitative Stability in Geometric and Functional Inequalities - Lecture 3

Tid: On 2021-05-26 kl 14.00

Plats: https://kth-se.zoom.us/j/61112478597

Medverkande: Alessio Figalli, ETH

Exportera till kalender

Geometric and functional inequalities play a crucial role in several problems arising in analysis and geometry. The issue of the sharpness of a constant, as well as the characterization of minimizers, is a classical and important question. More recently, there has been a growing interest in studying the stability of such inequalities. The basic question one wants to address is the following:

Suppose we are given a functional inequality for which minimizers are known. Can we quantitatively show that if a function “almost attains the equality,” then it is close to one of the minimizers?

In this series of lectures, I will first give an overview of this beautiful topic and then discuss some recent results concerning the Sobolev, isoperimetric, and Brunn–Minkowski inequalities.