You are not logged in KTH, so we cannot customize the content.
Course start: See schedule
Course book: Steven H Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, 2014)
[there are two editions of that book, from 2000 (Perseus Books Group) and 2014 (Westview Press), with only minor differences; both editions will do as course literature]
Credits: 7.5p
Examination: Homework examination and oral examination (the latter only for PhD students)
Prerequisites: basic course in differential equations is recommended
Lecturer: Jack Lidmar, Department of physics, AlbaNova, email: jlidmar@kth.se
Complex systems (dynamical systems) are mathematical models describing the time evolution of systems by means of equations of motion and initial values. Models are typically formulated in terms of coupled nonlinear differential equations (continuous time) or iterated maps (discrete time). Even for models with relative simple mathematical structure, the solutions may show surprisingly complex features, such as nonlinear oscillations, fractal structures and chaotic behavior.
The course gives an introduction to the analysis of such complex systems and their behavior. Key concepts are, amongst others, the phase space perspective, attractors, sensitive dependence on initial conditions, chaos, bifurcations, Poincare maps, and numerical solutions.
After the course you shall
Coupled nonlinear differential equations, phase space, trajectories, attractors (fixed points, limit cycle, tori, strange attractors etc), invariant sets, stability analysis, bifurcations, chaos, Lyapunov exponents, Poincare-Bendixson theorem, Lorenz equations, Rössler system, Poincare map, iterative maps, logistic map, Sharkovskii’s theorem.
Home assignments. For PhD students there will also be an oral examination.
Steven H Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, 2014)
Apart from the Strogatz book, there are a few others which present the course material from slightly different perspectives on a comparable level:
Further reading (popular science account on the development of chaos theory):
James Gleick, Chaos: Making a New Science (Penguin Books, 2008)