Laser Spectroscopy

Log in to your course web

You are not logged in KTH, so we cannot customize the content.

Content and learning outcomes

Course contents *

The course starts with a short introduction to the laser and its physical properties. We then discuss light-matter interaction using a quantum mechanical description, starting from the basics of atoms and molecules. We study a number of modern spectroscopic techniques and their use in biological and chemical physics, medicine, and environmental science. Focus is on practical examples from society and advanced techniques used in the research laboratory. The course includes laborations where we apply the measurement techniques and the data analysis studied. 

The main topics of the course are: Structure and dynamics of molecules. The construction and function of lasers. Interaction between light and matter. Laser types: narrow band and tunable, continuous wave and pulsed lasers, ultra-fast lasers and their physics. Laser applications in molecular physics and chemical physics: high resolution spectroscopy, short lived molecules (free radicals and ions), laser induced breakdwn spectroscopy (LIBS) femtosecond chemistry and spectroscopy, the use of the laser in medicine and for diagnostic purposes.

Intended learning outcomes *

After completing the course the student should be able to:

  • solve technical problems related to the quantum physical structure of atoms and molecules and their spectral properties.
  • use laser spectroscopic measurement methods, instruments and calculation programs, and report results and evaluate limitations.

Course Disposition

No information inserted

Literature and preparations

Specific prerequisites *

Modern Physics, or Molecular Structure for K2 and BIO2, or Quantum Chemistry and Spectroscopy for K4.

Recommended prerequisites

No information inserted


No information inserted


No information inserted

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale *

A, B, C, D, E, FX, F

Examination *

  • LAB1 - Laboratory Work, 2.0 credits, Grading scale: P, F
  • TEN1 - Examination, 6.0 credits, Grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade *

One written exam (TEN1; 6 university credits). To get the final mark the laboratory experiments have to be completed and approved (LAB1; 2 university credits).

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted


 Fredrik Laurell

Ethical approach *

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course web

Further information about the course can be found on the Course web at the link below. Information on the Course web will later be moved to this site.

Course web SK2800

Offered by

SCI/Applied undergraduate Physics

Main field of study *

Engineering Physics, Physics

Education cycle *

Second cycle

Add-on studies

No information inserted


Fredrik Laurell (


Feedback News