Hoppa till huvudinnehållet

Publikationer av Jon Tomas Gudmundsson

Refereegranskade

Artiklar

[1]
M. Renner et al., "Angular distribution of titanium ions and neutrals in high-power impulse magnetron sputtering discharges," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, vol. 41, no. 3, 2023.
[2]
M. Kateb, J. T. Gudmundsson och S. Ingvarsson, "Epitaxial growth and characterization of (001) [NiFe/M]20 (M = Cu, CuPt and Pt) superlattices," SURFACES AND INTERFACES, vol. 38, s. 102783, 2023.
[4]
S. S. Babu et al., "High power impulse magnetron sputtering of tungsten : a comparison of experimental and modelling results," Plasma sources science & technology, vol. 32, no. 3, s. 034003, 2023.
[5]
C. D. Arrowsmith et al., "Inductively-coupled plasma discharge for use in high-energy-density science experiments," Journal of Instrumentation, vol. 18, no. 4, 2023.
[7]
J. Fischer et al., "Insights into the copper HiPIMS discharge : deposition rate and ionised flux fraction," Plasma sources science & technology, vol. 32, no. 12, 2023.
[8]
D. Q. Wen et al., "On the importance of excited state species in low pressure capacitively coupled plasma argon discharges," Plasma sources science & technology, vol. 32, no. 6, 2023.
[9]
H. Hajihoseini et al., "Target ion and neutral spread in high power impulse magnetron sputtering," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, vol. 41, no. 1, 2023.
[10]
J. T. Gudmundsson, A. Anders och A. von Keudell, "Foundations of physical vapor deposition with plasma assistance," Plasma sources science & technology, vol. 31, no. 8, s. 083001, 2022.
[11]
M. Rudolph et al., "Influence of the magnetic field on the discharge physics of a high power impulse magnetron sputtering discharge," Journal of Physics D : Applied Physics, vol. 55, no. 1, 2022.
[12]
J. T. Gudmundsson et al., "Ionization region model of high power impulse magnetron sputtering of copper," Surface & Coatings Technology, vol. 442, 2022.
[13]
S. S. Babu et al., "Modeling of high power impulse magnetron sputtering discharges with tungsten target," Plasma sources science & technology, vol. 31, no. 6, s. 065009, 2022.
[14]
[15]
M. Rudolph et al., "Operating modes and target erosion in high power impulse magnetron sputtering," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, vol. 40, no. 4, s. 043005, 2022.
[18]
A. Proto och J. T. Gudmundsson, "Electron power absorption in radio frequency driven capacitively coupled chlorine discharge," Plasma sources science & technology, vol. 30, no. 6, 2021.
[19]
C. D. Arrowsmith et al., "Generating ultradense pair beams using 400 GeV/c protons," Physical Review Research, vol. 3, no. 2, 2021.
[20]
N. Brenning et al., "HiPIMS optimization by using mixed high-power and low-power pulsing," Plasma sources science & technology, vol. 30, no. 1, 2021.
[21]
H. Eliasson et al., "Modeling of high power impulse magnetron sputtering discharges with graphite target," Plasma sources science & technology, vol. 30, no. 11, 2021.
[23]
M. Rudolph et al., "On the electron energy distribution function in the high power impulse magnetron sputtering discharge," Plasma sources science & technology, vol. 30, no. 4, 2021.
[24]
[25]
J. T. Gudmundsson et al., "Surface effects in a capacitive argon discharge in the intermediate pressure regime," Plasma sources science & technology, vol. 30, no. 12, 2021.
[26]
M. Kateb, J. T. Gudmundsson och S. Ingvarsson, "Tailoring interface alloying and magnetic properties in (111) Permalloy/ Pt multilayers," Journal of Magnetism and Magnetic Materials, vol. 538, 2021.
[27]
M. Merino et al., "Collisionless electron cooling in a plasma thruster plume : experimental validation of a kinetic model," Plasma sources science & technology, vol. 29, no. 3, 2020.
[28]
M. Kateb, J. T. Gudmundsson och S. Ingvarsson, "Effect of substrate bias on microstructure of epitaxial film grown by HiPIMS : An atomistic simulation," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, vol. 38, no. 4, 2020.
[29]
A. Proto och J. T. Gudmundsson, "Electron power absorption dynamics in a low pressure radio frequency driven capacitively coupled discharge in oxygen," Journal of Applied Physics, vol. 128, no. 11, 2020.
[30]
[31]
N. Brenning et al., "Optimization of HiPIMS discharges : The selection of pulse power, pulse length, gas pressure, and magnetic field strength," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, vol. 38, no. 3, 2020.
[33]
J. T. Gudmundsson, "Physics and technology of magnetron sputtering discharges," Plasma sources science & technology, vol. 29, no. 11, 2020.
[34]
Y. Akrami et al., "Planck 2018 results : XI. Polarized dust foregrounds," Astronomy and Astrophysics, vol. 641, 2020.
[35]
H. Hajihoseini et al., "Sideways deposition rate and ionized flux fraction in dc and high power impulse magnetron sputtering," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, vol. 38, no. 3, 2020.
[36]
M. T. Sultan et al., "Structural and photoluminescence study of TiO2 layer with self-assembled Si1-xGex nanoislands," Journal of Applied Physics, vol. 128, no. 8, 2020.
[37]
M. Slapanska et al., "Study of the transition from self-organised to homogeneous plasma distribution in chromium HiPIMS discharge," Journal of Physics D : Applied Physics, vol. 53, no. 15, 2020.
[38]
G. A. Skarphedinsson och J. T. Gudmundsson, "Tailored voltage waveforms applied to a capacitively coupled chlorine discharge," Plasma sources science & technology, vol. 29, no. 8, 2020.
[39]
D. A. Toneli et al., "A global model study of low pressure high density CF4 discharge," Plasma sources science & technology, vol. 28, no. 2, 2019.
[40]
M. Kateb, J. T. Gudmundsson och S. Ingvarsson, "Effect of atomic ordering on the magnetic anisotropy of single crystal Ni80Fe20," AIP Advances, vol. 9, no. 3, 2019.
[41]
[42]
J. T. Gudmundsson och A. Proto, "Electron heating mode transitions in a low pressure capacitively coupled oxygen discharge," Plasma sources science & technology, vol. 28, no. 4, 2019.
[43]
M. T. Sultan et al., "Enhanced photoconductivity of SiGe nanocrystals in SiO2 driven by mild annealing," Applied Surface Science, vol. 469, s. 870-878, 2019.
[44]
M. T. Sultan et al., "Enhanced photoconductivity of embedded SiGe nanoparticles by hydrogenation," Applied Surface Science, vol. 479, s. 403-409, 2019.
[45]
M. T. Sultan et al., "Fabrication and characterization of Si1-xGex nanocrystals in as-grown and annealed structures : a comparative study," Beilstein Journal of Nanotechnology, vol. 10, s. 1873-1882, 2019.
[46]
H. Hajihoseini et al., "Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering," Beilstein Journal of Nanotechnology, vol. 10, s. 1914-1921, 2019.
[49]
H. Hajihoseini et al., "Effect of substrate bias on properties of HiPIMS deposited vanadium nitride films," Thin Solid Films, vol. 663, s. 126-130, 2018.
[50]
D. O. Thorsteinsson och J. T. Gudmundsson, "Growth of HfN thin films by reactive high power impulse magnetron sputtering," AIP Advances, vol. 8, no. 3, 2018.
[51]
G. Giono et al., "Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster," Plasma sources science & technology, vol. 27, no. 1, 2018.
[52]
A. Butler et al., "On three different ways to quantify the degree of ionization in sputtering magnetrons," Plasma sources science & technology, vol. 27, no. 10, 2018.
[54]
J. T. Gudmundsson, D. I. Snorrason och H. Hannesdottir, "The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge," Plasma sources science & technology, vol. 27, no. 2, 2018.
[55]
A. Proto och J. T. Gudmundsson, "The role of surface quenching of the singlet delta molecule in a capacitively coupled oxygen discharge," Plasma sources science & technology, vol. 27, no. 7, 2018.
[57]
[58]
J. T. Gudmundsson och A. Hecimovic, "Foundations of DC plasma sources," Plasma sources science & technology, vol. 26, no. 12, 2017.
[59]
J. T. Gudmundsson och D. I. Snorrason, "On electron heating in a low pressure capacitively coupled oxygen discharge," Journal of Applied Physics, vol. 122, no. 19, 2017.
[60]
H. Hannesdottir och J. T. Gudmundsson, "On singlet metastable states, ion flux and ion energy in single and dual frequency capacitively coupled oxygen discharges," Journal of Physics D : Applied Physics, vol. 50, no. 17, 2017.
[61]
C. Huo et al., "Particle-balance models for pulsed sputtering magnetrons," Journal of Physics D : Applied Physics, vol. 50, no. 35, 2017.
[62]
A. Hecimovic och J. T. Gudmundsson, "Preface to Special Topic : Reactive high power impulse magnetron sputtering," Journal of Applied Physics, vol. 121, no. 17, 2017.
[63]
H. Hajihoseini och J. T. Gudmundsson, "Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering," Journal of Physics D : Applied Physics, vol. 50, no. 50, 2017.
[64]
J. T. Gudmundsson et al., "An ionization region model of the reactive Ar/O-2 high power impulse magnetron sputtering discharge," Plasma sources science & technology, vol. 25, no. 6, 2016.
[65]
N. Brenning et al., "The role of Ohmic heating in dc magnetron sputtering," Plasma sources science & technology, vol. 25, no. 6, 2016.
[66]
J. T. Gudmundsson och H. Hannesdottir, "The role of the metastable O2(b) and energy-dependent secondary electron emission yields in capacitively coupled oxygen discharges," Plasma sources science & technology, vol. 25, no. 5, 2016.
[68]
J. T. Gudmundsson et al., "Are the argon metastables important in high power impulse magnetron sputtering discharges?," Physics of Plasmas, vol. 22, no. 11, 2015.
[69]
S. Huang och J. T. Gudmundsson, "Dual frequency capacitively coupled chlorine discharge," Plasma sources science & technology, vol. 24, no. 1, 2015.
[70]
J. T. Gudmundsson, "On reactive high power impulse magnetron sputtering," Plasma Physics and Controlled Fusion, vol. 58, no. 1, 2015.
[71]
D. A. Toneli et al., "On the formation and annihilation of the singlet molecular metastables in an oxygen discharge," Journal of Physics D : Applied Physics, vol. 48, no. 32, 2015.
[72]
J. T. Gudmundsson och M. A. Lieberman, "On the role of metastables in capacitively coupled oxygen discharges," Plasma sources science & technology, vol. 24, no. 3, 2015.
[73]
J. T. Gudmundsson och B. Ventejou, "The pressure dependence of the discharge properties in a capacitively coupled oxygen discharge," Journal of Applied Physics, vol. 118, no. 15, 2015.
[74]
S. Huang och J. T. Gudmundsson, "A current driven capacitively coupled chlorine discharge," Plasma sources science & technology, vol. 23, no. 2, 2014.
[75]
S. Huang och J. T. Gudmundsson, "Ion Energy and Angular Distributions in a Dual-frequency Capacitively Coupled Chlorine Discharge," IEEE Transactions on Plasma Science, vol. 42, no. 10, s. 2854-2855, 2014.
[76]
C. Huo et al., "On the road to self-sputtering in high power impulse magnetron sputtering : particle balance and discharge characteristics," Plasma sources science & technology, vol. 23, no. 2, s. 025017, 2014.
[77]
J. T. Gudmundsson, E. Kawamura och M. A. Lieberman, "A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code," Plasma sources science & technology, vol. 22, no. 3, 2013.
[78]
C. Huo et al., "On sheath energization and Ohmic heating in sputtering magnetrons," Plasma sources science & technology, vol. 22, no. 4, s. 045005, 2013.
[79]
B. Agnarsson et al., "Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering," Thin Solid Films, vol. 545, s. 445-450, 2013.
[80]
J. T. Gudmundsson et al., "High power impulse magnetron sputtering discharge," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, vol. 30, no. 3, s. 030801, 2012.
[81]
F. Magnus et al., "Nucleation and resistivity of ultrathin TiN films grown by high power impulse magnetron sputtering," IEEE Electron Device Letters, vol. 33, no. 7, s. 1045-1047, 2012.
[82]
M. Raadu et al., "An ionization region model for high-power impulse magnetron sputtering discharges," Plasma sources science & technology, vol. 20, no. 6, s. 065007, 2011.
[84]
E. G. Thorsteinsson och J. T. Gudmundsson, "A global (volume averaged) model of a chlorine discharge," Plasma sources science & technology, vol. 19, no. 1, 2010.
[85]
M. Samuelsson et al., "On the film density using high power impulse magnetron sputtering," Surface & Coatings Technology, vol. 205, no. 2, s. 591-596, 2010.
[87]
E. G. Thorsteinsson och J. T. Gudmundsson, "A global (volume averaged) model of the nitrogen discharge : II. Pulsed Power Modulation," Plasma sources science & technology, vol. 18, no. 4, 2009.
[88]
E. G. Thorsteinsson och J. T. Gudmundsson, "A global (volume averaged) model of the nitrogen discharge: I. Steady State," Plasma sources science & technology, vol. 18, no. 4, 2009.
[89]
F. Magnus och J. T. Gudmundsson, "Digital Smoothing of the Langmuir Probe I-V Characteristic," Review of Scientific Instruments, vol. 79, no. 7, 2008.
[90]
J. S. Agustsson et al., "Growth, coalescence, and electrical resistivity of thin Pt films grown by dc magnetron sputtering on SiO2," Applied Surface Science, vol. 254, no. 22, s. 7356-7360, 2008.
[91]
[92]
J. T. Gudmundsson och E. G. Thorsteinsson, "Oxygen discharges diluted with argon : dissociation processes," Plasma sources science & technology, vol. 16, no. 2, s. 399-412, 2007.
[93]
K. B. Gylfason et al., "In-situ resistivity measurements during growth of ultra-thin Cr_0.7Mo_0.3," Thin Solid Films, vol. 515, no. 2, s. 583-586, 2006.
[94]
U. Helmersson et al., "Ionized Physical Vapor Deposition (IPVD): A Review of Technology and Applications," Thin Solid Films, vol. 513, s. 1-24, 2006.
[95]
[96]
J. T. Gudmundsson, J. Alami och U. Helmersson, "Spatial and Temporal Behavior of the Plasma Parameters in a Pulsed Magnetron Discharge," Surface & Coatings Technology, vol. 161, no. 2-3, s. 249-256, 2002.
[97]
J. T. Gudmundsson, J. Alami och U. Helmersson, "Evolution of the electron energy distribution and the plasma parameters in a pulsed magnetron discharge," Applied Physics Letters, vol. 78, no. 22, s. 3427-3429, 2001.
[99]
J. T. Gudmundsson et al., "On the Plasma Parameters of a Planar Inductive Oxygen Discharge," Journal of Physics D : Applied Physics, vol. 33, s. 1323-1331, 2000.
[100]
J. T. Gudmundsson, "Ion Energy Distribution in H2/Ar Plasma in a Planar Inductive Discharge," Plasma sources science & technology, vol. 8, no. 1, s. 58-64, 1999.
[101]
J. T. Gudmundsson, H. G. Svavarsson och H. P. Gislason, "Lithium-gold-related complexes in p-type crystalline silicon," Physica B, vol. 273-274, s. 379-382, 1999.
[102]
J. T. Gudmundsson, "The Ion Energy Distribution in a Planar Inductive Oxygen Discharge," Journal of Physics D : Applied Physics, vol. 32, no. 7, s. 798-803, 1999.
[103]
J. T. Gudmundsson, "Experimental Studies of H2/Ar Plasma in a Planar Inductive Discharge," Plasma sources science & technology, vol. 7, no. 3, s. 330-336, 1998.

Konferensbidrag

[104]
M. T. Sultan et al., "Photoluminescence study of Si1-xGex nanoparticles in various oxide matrices," i 2021 International Semiconductor Conference (Cas), 2021, s. 21-24.
[105]
M. T. Sultan et al., "Enhanced Photoconductivity of SIGE-Trilayer Stack by Retrenching Annealing Conditions," i 2018 International Semiconductor Conference (CAS), 2018, s. 61-64.
[106]
M. T. Sultan et al., "The Effect of H2/Ar Plasma Treatment over Photoconductivity of Sige Nanoparticles Sandwiched between Silicon Oxide Matrix," i Proceedings of the International Semiconductor Conference, CAS, 2018, s. 257-260.
[107]
A. Slav et al., "Influence of preparation conditions on structure and photosensing properties of GeSi/TiO2 multilayers," i 2017 International Semiconductor Conference (CAS), 2017, s. 63-66.
[108]
J. T. Gudmundsson och H. Hannesdottir, "On the role of metastable states in low pressure oxygen discharges," i AIP Conference Proceedings, 2017.
[109]
J. T. Gudmundsson et al., "The current waveform in reactive high power impulse magnetron sputtering," i 2016 IEEE International Conference on Plasma Science (ICOPS), 2016.
[110]
J. T. Gudmundsson och H. Hannesdottir, "The role of the singlet metastables in capacitively coupled oxygen discharges," i 2016 IEEE International Conference on Plasma Science (ICOPS), 2016.
[111]
D. O. Thorsteinsson, T. K. Tryggvason och J. T. Gudmundsson, "Morphology of tantalum nitride thin films grown on fused quartz by reactive high power impulse magnetron sputtering (HiPIMS)," i Materials Research Society Symposium Proceedings, 2015, s. 21-26.
[112]
[113]
J. T. Gudmundsson et al., "Plasma Dynamics in an Unipolar Pulsed Magnetron Sputtering Discharge," i 57th Gaseous Electronics Conference, September 26-29, 2004, Shannon, The Republic of Ireland, 2004.
[114]
K. B. Gylfason et al., "Ultra-thin Lattice Matched Cr_xMo_1-x/MgO Multilayers," i 51st International Symposium of the American Vacuum Society, Anaheim , CA , USA, 2004., 2004.

Kapitel i böcker

[115]
D. Lundin, T. Minea och J. T. Gudmundsson, "Preface," i High Power Impulse Magnetron Sputtering : Fundamentals, Technologies, Challenges and Applications, Daniel Lundin, Tiberiu Minea and Jon Tomas Gudmundsson red., : Elsevier, 2019, s. xiii-xiv.

Icke refereegranskade

Konferensbidrag

[116]
J. S. Agustsson et al., "Hydrogen uptake in MgO thin films grown by reactive magnetron sputtering," i 53rd International Symposium of the American Vacuum Society, November 12-17, San Francisco, CA, USA, 2006, 2006.
[117]
J. S. Agustsson et al., "Electrical properties of thin MgO films," i Thirteenth International Congress on Thin Films (ICTF-13), Stockholm, Sweden, 2005., 2005.

Böcker

Kapitel i böcker

[119]
M. Čada, J. T. Gudmundsson och D. Lundin, "Electron dynamics in high power impulse magnetron sputtering discharges," i High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications, : Elsevier, 2019, s. 81-110.
[120]
Z. Hubička et al., "Hardware and power management for high power impulse magnetron sputtering," i High Power Impulse Magnetron Sputtering : Fundamentals, Technologies, Challenges and Applications, : Elsevier, 2019, s. 49-80.
[121]
M. Čada et al., "Heavy species dynamics in high power impulse magnetron sputtering discharges," i High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications, : Elsevier, 2019, s. 111-158.
[122]
J. T. Gudmundsson och D. Lundin, "Introduction to magnetron sputtering," i High Power Impulse Magnetron Sputtering : Fundamentals, Technologies, Challenges and Applications, : Elsevier, 2019, s. 1-48.
[123]
T. Minea et al., "Modeling the high power impulse magnetron sputtering discharge," i High Power Impulse Magnetron Sputtering : Fundamentals, Technologies, Challenges and Applications, : Elsevier, 2019, s. 159-221.
[124]
D. Lundin et al., "Physics of high power impulse magnetron sputtering discharges," i High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications, : Elsevier, 2019, s. 265-332.
[125]
T. Kubart, J. T. Gudmundsson och D. Lundin, "Reactive high power impulse magnetron sputtering," i High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications, : Elsevier, 2019, s. 223-263.
[126]
J. T. Gudmundsson et al., "ON ELECTRON HEATING IN MAGNETRON SPUTTERING DISCHARGES," i 2017 IEEE International Conference on Plasma Science (ICOPS), : IEEE, 2017.
Senaste synkning med DiVA:
2024-04-15 00:22:13