Publications by Edwin Langmann
Peer reviewed
Articles
[1]
V. Melin and E. Langmann, "Closed-Form Propagator of the Calogero Model," Physical Review Letters, vol. 132, no. 17, 2024.
[2]
B. K. Berntson, E. Langmann and J. Lenells, "Elliptic soliton solutions of the spin non-chiral intermediate long-wave equation," Letters in Mathematical Physics, vol. 113, no. 3, 2023.
[3]
E. Langmann and C. Triola, "Universal and nonuniversal features of Bardeen-Cooper-Schrieffer theory with finite-range interactions," Physical Review B, vol. 108, no. 10, 2023.
[4]
E. Langmann, M. Noumi and J. Shiraishi, "Construction of Eigenfunctions for the Elliptic Ruijsenaars Difference Operators," Communications in Mathematical Physics, vol. 391, no. 3, pp. 901-950, 2022.
[5]
M. Hallnas et al., "From Kajihara's transformation formula to deformed Macdonald-Ruijsenaars and Noumi-Sano operators," Selecta Mathematica, New Series, vol. 28, no. 2, 2022.
[6]
M. Hallnäs et al., "Higher Order Deformed Elliptic Ruijsenaars Operators," Communications in Mathematical Physics, vol. 392, no. 2, pp. 659-689, 2022.
[7]
B. K. Berntson, E. Langmann and J. Lenells, "On the non-chiral intermediate long wave equation," Nonlinearity, vol. 35, no. 8, pp. 4549-4584, 2022.
[8]
B. K. Berntson, E. Langmann and J. Lenells, "On the non-chiral intermediate long wave equation : II. Periodic case," Nonlinearity, vol. 35, no. 8, pp. 4517-4548, 2022.
[9]
B. K. Berntson, E. Langmann and J. Lenells, "Spin generalizations of the Benjamin-Ono equation," Letters in Mathematical Physics, vol. 112, no. 3, 2022.
[10]
B. K. Berntson, R. Klabbers and E. Langmann, "The non-chiral intermediate Heisenberg ferromagnet equation," Journal of High Energy Physics (JHEP), vol. 2022, no. 3, 2022.
[11]
F. Atai, M. Hallnäs and E. Langmann, "Super-Macdonald Polynomials: Orthogonality and Hilbert Space Interpretation," Communications in Mathematical Physics, vol. 388, no. 1, pp. 435-468, 2021.
[12]
E. Langmann, M. Noumi and J. Shiraishi, "Basic Properties of Non-Stationary Ruijsenaars Functions," Symmetry, Integrability and Geometry : Methods and Applications, vol. 16, 2020.
[13]
F. Atai and E. Langmann, "Exact solutions by integrals of the non-stationary elliptic Calogero–Sutherland equation," Journal of Integrable Systems, vol. 5, no. 1, 2020.
[14]
B. K. Berntson, R. Klabbers and E. Langmann, "Multi-solitons of the half-wave maps equation and Calogero-Moser spin-pole dynamics," Journal of Physics A : Mathematical and Theoretical, vol. 53, no. 50, 2020.
[15]
B. K. Berntson, E. Langmann and J. Lenells, "Nonchiral intermediate long-wave equation and interedge effects in narrow quantum Hall systems," Physical Review B, vol. 102, no. 15, 2020.
[16]
E. Langmann and P. Moosavi, "Diffusive Heat Waves in Random Conformal Field Theory," Physical Review Letters, vol. 122, no. 2, 2019.
[17]
A. Farrokh, M. Hallnas and E. Langmann, "Orthogonality of super‐Jack polynomials and a Hilbert space interpretation of deformed Calogero–Moser–Sutherland operators," Bulletin of the London Mathematical Society, vol. 51, no. 2, pp. 353-370, 2019.
[18]
R. L. Frank, C. Hainzl and E. Langmann, "The BCS critical temperature in a weak homogeneous magnetic field," Journal of Spectral Theory, vol. 9, no. 3, pp. 1005-1062, 2019.
[19]
E. Langmann, C. Triola and A. V. Balatsky, "Ubiquity of Superconducting Domes in the Bardeen-Cooper-Schrieffer Theory with Finite-Range Potentials," Physical Review Letters, vol. 122, no. 15, 2019.
[20]
E. Langmann and P. Moosavi, "Finite-Time Universality in Nonequilibrium CFT," Journal of statistical physics, vol. 172, no. 2, pp. 353-378, 2018.
[21]
F. Atai and E. Langmann, "Series Solutions of the Non-Stationary Heun Equation," Symmetry, Integrability and Geometry : Methods and Applications, vol. 14, 2018.
[22]
F. Atai and E. Langmann, "Deformed Calogero-Sutherland model and fractional quantum Hall effect," Journal of Mathematical Physics, vol. 58, no. 1, 2017.
[23]
E. Langmann et al., "Steady states and universal conductance in a quenched Luttinger model," Communications in Mathematical Physics, vol. 349, no. 2, pp. 551-582, 2017.
[24]
E. Langmann et al., "Time evolution of the Luttinger model with nonuniform temperature profile," Physical Review B, vol. 95, no. 23, 2017.
[25]
M. Hallnäs and E. Langmann, "A product formula for the eigenfunctions of a quartic oscillator," Journal of Mathematical Analysis and Applications, vol. 426, no. 2, pp. 1012-1025, 2015.
[26]
E. Langmann and P. Moosavi, "Construction by bosonization of a fermion-phonon model," Journal of Mathematical Physics, vol. 56, no. 9, 2015.
[27]
E. Langmann, "Explicit Solution of the (Quantum) Elliptic Calogero-Sutherland Model," Annales de l'Institute Henri Poincare. Physique theorique, vol. 15, no. 4, pp. 755-791, 2014.
[28]
J. de Woul and E. Langmann, "Gauge Invariance, Correlated Fermions, and Photon Mass in 2+1 Dimensions," Journal of statistical physics, vol. 154, no. 3, pp. 877-894, 2014.
[29]
F. Atai, M. Hallnäs and E. Langmann, "Source Identities and Kernel Functions for Deformed (Quantum) Ruijsenaars Models," Letters in Mathematical Physics, vol. 104, no. 7, pp. 811-835, 2014.
[30]
J. de Woul and E. Langmann, "Exact Solution of a 2D Interacting Fermion Model," Communications in Mathematical Physics, vol. 314, no. 1, pp. 1-56, 2012.
[31]
J. De Woul and E. Langmann, "Fermions in Two Dimensions, Bosonization, and Exactly Solvable Models," International Journal of Modern Physics B, vol. 26, no. 22, pp. 1244005, 2012.
[32]
E. Langmann and K. Takemura, "Source identity and kernel functions for Inozemtsev-type systems," Journal of Mathematical Physics, vol. 53, no. 8, pp. 082105, 2012.
[33]
E. Langmann, "A 2D Luttinger Model," Journal of statistical physics, vol. 141, no. 1, pp. 17-52, 2010.
[34]
E. Langmann, "A Two-Dimensional Analogue of the Luttinger Model," Letters in Mathematical Physics, vol. 92, no. 2, pp. 109-124, 2010.
[35]
M. Hallnäs and E. Langmann, "A Unified Construction of Generalized Classical Polynomials Associated with Operators of Calogero-Sutherland Type," Constructive approximation, vol. 31, no. 3, pp. 309-342, 2010.
[36]
J. de Woul and E. Langmann, "Partially Gapped Fermions in 2D," Journal of statistical physics, vol. 139, no. 6, pp. 1033-1065, 2010.
[37]
E. Langmann, "Source Identity and Kernel Functions for Elliptic Calogero-Sutherland Type Systems," Letters in Mathematical Physics, vol. 94, no. 1, pp. 63-75, 2010.
[38]
E. Langmann and G. Lindblad, "Fermi's Golden Rule and Exponential Decay as a RG Fixed Point," Journal of statistical physics, vol. 134, no. 4, pp. 749-768, 2009.
[39]
E. Langmann and M. Wallin, "Mean field magnetic phase diagrams for the two dimensional t-t '-U Hubbard model," Journal of statistical physics, vol. 127, no. 4, pp. 825-840, 2007.
[40]
E. Langmann, "Singular Eigenfunctions of Calogero-Sutherland Type Systems and How to Transform Them into Regular Ones," Symmetry, Integrability and Geometry : Methods and Applications, vol. 3, pp. 031, 2007.
[41]
M. Hallnäs and E. Langmann, "Explicit formulae for the eigenfunctions of the N-body Calogero model," Journal of Physics A : Mathematical and General, vol. 39, no. 14, pp. 3511-3533, 2006.
[42]
F. Calogero and E. Langmann, "Goldfishing by gauge theory," Journal of Mathematical Physics, vol. 47, no. 8, 2006.
[43]
E. Langmann, "Remarkable identities related to the (quantum) elliptic Calogero-Sutherland model," Journal of Mathematical Physics, vol. 47, no. 2, 2006.
[44]
E. Langmann, A. Laptev and C. Paufler, "Singular factorizations, self-adjoint extensions and applications to quantum many-body physics," Journal of Physics A : Mathematical and General, vol. 39, no. 5, pp. 1057-1071, 2006.
[45]
M. Hallnäs and E. Langmann, "Exact solutions of two complementary one-dimensional quantum many-body systems on the half-line," Journal of Mathematical Physics, vol. 46, no. 5, 2005.
[46]
E. Langmann, "Gauge theory approach towards an explicit solution of the (classical) elliptic Calogero-Moser system," Journal of Nonlinear Mathematical Physics, vol. 12, pp. 423-439, 2005.
[47]
M. Hallnäs, E. Langmann and C. Paufler, "Generalized local interactions in 1D : solutions of quantum many-body systems describing distinguishable particles," Journal of Physics A : Mathematical and General, vol. 38, no. 22, pp. 4957-4974, 2005.
[48]
H. Grosse, E. Langmann and C. Paufler, "Exact solution of a 1D quantum many-body system with momentum-dependent interactions," Journal of Physics A : Mathematical and General, vol. 37, no. 16, pp. 4579-4592, 2004.
[49]
E. Langmann, R. J. Szabo and K. Zarembo, "Exact solution of quantum field theory on noncommutative phase spaces," Journal of High Energy Physics (JHEP), no. 1, pp. 017, 2004.
[50]
E. Langmann, "Exactly solvable models for 2D interacting fermions," Journal of Physics A : Mathematical and General, vol. 37, no. 2, pp. 407-423, 2004.
[51]
E. Langmann, "Second quantization of the elliptic Calogero-Sutherland model," Communications in Mathematical Physics, vol. 247, no. 2, pp. 321-351, 2004.
[52]
E. Langmann, R. J. Szabo and K. Zarembo, "Exact solution of noncommutative field theory in background magnetic fields," Physics Letters B, vol. 569, no. 02-jan, pp. 95-101, 2003.
[53]
E. Langmann, "Interacting fermions on non-commutative spaces: Exactly solvable quantum field theories in 2n+1 dimensions," Nuclear Physics B, vol. 654, no. 3, pp. 404-426, 2003.
[54]
E. Langmann and R. J. Szabo, "Duality in scalar field theory on noncommutative phase spaces," Physics Letters B, vol. 533, no. 02-jan, pp. 168-177, 2002.
[55]
E. Langmann, "Algorithms to solve the (quantum) Sutherland model," Journal of Mathematical Physics, vol. 42, no. 9, pp. 4148-4157, 2001.
[56]
E. Langmann, J. Mickelsson and S. Rydh, "Anomalies and Schwinger terms in NCG field theory models," Journal of Mathematical Physics, vol. 42, no. 10, pp. 4779-4801, 2001.
[57]
E. Langmann, "Generalized Yang-Mills actions from Dirac operator determinants," Journal of Mathematical Physics, vol. 42, no. 11, pp. 5238-5256, 2001.
[58]
E. Langmann and R. J. Szabo, "Teleparallel gravity and dimensional reductions of noncommutative gauge theory," Physical Review D. Particles and fields, vol. 6410, no. 10, 2001.
[59]
E. Langmann, "Anyons and the elliptic Calogero-Sutherland model," Letters in Mathematical Physics, vol. 54, no. 4, pp. 279-289, 2000.
[60]
H. Grosse and E. Langmann, "Chiral Schwinger models without gauge anomalies," Nuclear Physics B, vol. 587, no. 03-jan, pp. 568-584, 2000.
[61]
J. Blom and E. Langmann, "Finding and solving Calogero-Moser type systems using Yang-Mills gauge theories," Nuclear Physics B, vol. 563, pp. 506-532, 1999.
[62]
A. L. Carey and E. Langmann, "Loop groups, anyons and the Calogero-Sutherland model," Communications in Mathematical Physics, vol. 201, pp. 1-34, 1999.
[63]
E. Langmann and A. Niemi, "Towards a string representation of infrared SU(2) Yang-Mills theory," Physics Letters B, vol. 463, pp. 252-256, 1999.
[64]
E. Langmann et al., "Mean field analysis of a model for superconductivity in an anti-ferromagnetic background," Physica. C, Superconductivity, vol. 296, pp. 119-136, 1998.
[65]
E. Langmann et al., "Mean field analysis of a model for superconductivity in an anti-ferromagnetic background," Physica. C, Superconductivity, vol. 296, no. 1-2, pp. 119-136, 1998.
[66]
J. Blom and E. Langmann, "Novel integrable spin-particle models from gauge theories on a cylinder," Physics Letters B, vol. 429, pp. 336-342, 1998.
[67]
E. Langmann, "Descent equations of Yang-Mills anomalies in noncommutative geometry," Journal of Geometry and Physics, pp. 259-279, 1997.
[68]
E. Langmann and M. Wallin, "Mean field approach to antiferromagnetic domains in the doped Hubbard model," Physical Review B Condensed Matter, pp. 9439-9451, 1997.
[69]
H. Grosse, E. Langmann and E. Raschhofer, "The Luttinger-Schwinger Model," Annals of Physics, vol. 253, pp. 310-331, 1997.
[70]
E. Langmann and J. Mickelsson, "Elementary Derivation of the Chiral Anomaly," Letters in Mathematical Physics, vol. 6, pp. 45-54, 1996.
[71]
E. Langmann, "Quantum Gauge Theories and Noncommutative Geometry," Acta Physica Polonica B, vol. 27, pp. 2477-2496, 1996.
[72]
E. Langmann and J. Mickelsson, "Scattering matrix in external field problems," Journal of Mathematical Physics, vol. 37, pp. 3933-3953, 1996.
[73]
E. Langmann, "Non-commutative Integration Calculus," Journal of Mathematical Physics, vol. 36, pp. 3822-3835, 1995.
[74]
E. Langmann, "(3+1)-Dimensional Schwinger Terms and Non-commutative Geometry," Physics Letters B, vol. 338, pp. 241-248, 1994.
[75]
E. Langmann, "Cocycles for Boson and Fermion Bogoliubov Transformations," Journal of Mathematical Physics, vol. 35, pp. 96-112, 1994.
[76]
E. Langmann, M. Salmhofer and A. Kovner, "Consistent axial-like gauge fixing on hypertori," Modern Physics Letters A, vol. 9, pp. 2913-2926, 1994.
[77]
E. Langmann, "Fermion Current Algebras and Schwinger Terms in 3+1 Dimensions," Communications in Mathematical Physics, vol. 162, pp. 1-32, 1994.
[78]
E. Langmann and G. W. Semenoff, "QCD(1+1) with massless quarks and gauge covariant Sugawara construction," Physics Letters B, vol. 341, pp. 195-204, 1994.
[79]
E. Langmann and G. W. Semenoff, "Gribov ambiguity and non-trivial vacuum structure of gauge theories on a cylinder," Physics Letters B, vol. 303, pp. 303-307, 1993.
[80]
M. Diamantini et al., "SU (N) antiferromagnets and strongly coupled QED: effective field theory for Josephson junctions arrays," Nuclear physics B, Proceedings supplements, vol. 33, pp. 192-208, 1993.
[81]
H. Grosse and E. Langmann, "Supersymmetry breaking and the Jaynes-Cummings model," Physics Letters A, vol. 176, no. 5, pp. 307-312, 1993.
[82]
M. Dobroliubov, E. Langmann and P. Stamp, "The Superfluidity and Experimental Properties of Odd-Energy-Gap Superconductors," Europhysics letters, vol. 26, no. 2, 1993.
[83]
H. Grosse and E. Langmann, "A superversion of quasifree second quantization. I. Charged particles," Journal of Mathematical Physics, vol. 3, no. 3, pp. 1032-1046, 1992.
[84]
E. Langmann, "Fermi-surface harmonics in the theory of the upper critical field," Physical Review B Condensed Matter, vol. 46, no. 14, pp. 9104, 1992.
[85]
E. Langmann and G. W. Semenoff, "Gauge Theories on a Cylinder," Physics Letters B, vol. 296, pp. 117-120, 1992.
[86]
E. Langmann and G. W. Semenoff, "Strong coupling gauge theory, quantum spin systems and the spontaneous breaking of chiral symmetry," Physics Letters B, vol. 297, pp. 175-180, 1992.
[87]
H. Grosse and E. Langmann, "The geometric phase and the Schwinger term in some models," International Journal of Modern Physics A, vol. 7, no. 21, pp. 5045-5083, 1992.
[88]
H. Grosse and E. Langmann, "On current superalgebras and super-Schwinger terms," Letters in Mathematical Physics, no. 1, pp. 69-76, 1991.
[89]
E. Langmann, "On the upper critical field of anisotropic superconductors," Physica. C, Superconductivity, vol. 73, pp. 347-356, 1991.
[90]
E. Langmann, "Bc2(T) of anisotropic systems: some explicit results," Physica B: Physics of Condensed Matter, vol. 65, pp. 1061-1062, 1990.
[91]
W. Pint, E. Langmann and E. Schachinger, "The critical temperature of superconductors with a cylinder symmetrical Fermi surface," Physica. C, Superconductivity, vol. 157, no. 3, pp. 415-424, 1989.
[92]
E. Langmann, "Theory of the upper critical magnetic field without local approximation," Physica. C, Superconductivity, vol. 59, pp. 561-569, 1989.
Conference papers
[93]
E. Langmann, "Non-commutative geometry and exactly solvable systems," in INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008.
[94]
E. Langmann, "A method to derive explicit formulas for an elliptic generalization of the Jack polynomials," in Jack, Hall-Littlewood and Macdonald Polynomials, 2006, pp. 257-270.
[95]
E. Langmann, "An explicit solution of the (quantum) elliptic Calogero-Sutherland model," in SPT 2004 : SYMMETRY AND PERTURBATION THEORY, 2005, pp. 159-174.
[96]
E. Langmann, "Conformal field theory and the solution of the (quantum) elliptic Calogero-Sutherland system," in Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, pp. 223-240.
Non-peer reviewed
Chapters in books
[97]
E. Langmann, "Bosons and Fermions in External Fields," in Encyclopedia of Mathematical Physics: Five-Volume Set, : Elsevier BV, 2006, pp. 1-1.
[98]
E. Langmann, "Bosons and Fermions in External Fields," in Encyclopedia of Mathematical Physics: Five-Volume Set, : Elsevier Inc., 2004, pp. 318-326.
Other
[99]
M. Hallnäs and E. Langmann, "Quantum Calogero-Sutherland type models and generalised classical polynomials," (Manuscript).
[100]
F. Atai and E. Langmann, "Deformed Calogero-Sutherland model and fractional Quantum Hall effect," (Manuscript).
[101]
[102]
[103]
Latest sync with DiVA:
2024-09-01 02:12:12