Hoppa till huvudinnehållet
Till KTH:s startsida Till KTH:s startsida

Publications (2002-2020)

  1. Bagherbandi M. (2002), The best radius of stokes integral for computation of Geoid, journal of National Cartographic Center of Iran (NCC), in Persian.
  2. Bagherbandi M. (2002), The atmospheric effect on gravity in the Stokes-Helmert Space ,  K.N.Toosi University of Technology Faculty of Geodesy & Geomatics Dep. Tehran , Iran.
  3. Bagherbandi M, Eshagh M., Sjöberg L.E. (2009), Multi- objective versus single-objective models in geodetic network optimization. Nordic Journal of Surveying and Real Estate Research Volume 6, Number 1, 2009.
  4.  Eshagh M. Bagherbandi M. Sjöberg  L.E. (2011), A combined global Moho model based on seismic and gravimetric data . Acta Geophysica geodetica, vol 46(1), pp. 25-38, doi: 10.1556/AGeod.46.2100.1.3.
  5.  Bagherbandi M. and Sjöberg L. E. (2011), Comparsion of crustal thickness from two  isostatic models versus CRUST2.0, Stud. Geophys. Geod., 55 (2011), 641-666, DOI:  10.1007/s11200-010-9030-0.
  6. Sjöberg L. E.  and Bagherbandi M. (2011), A Method of Estimating the Moho Density Contrast With A Tentative Application by EGM08 and CRUST2.0. Acta  Geophysica, vol. 58, no. ,  pp. 1-24, doi: 10.2478/s11600-011-0003-7.
  7. Sjöberg L. E.  and Bagherbandi M. (2011), A Numerical Study of the Analytical Downward Continuation Error in Geoid Computation by EGM08. Journal of Geodetic Science, vol 1 pp. 2-8 DOI: 10.2478/v10156-010-0001-8.
  8. Eshagh M. and Bagherbandi M. (2011), Smoothing impact of isostatic crustal thickness models on local integral inversion of satellite gravity gradiometry data. Acta  Geophysica, vol. 59, no. 5, Oct. 2011, pp. 891-906 doi: 10.2478/s11600-011-0017-1.
  9. Bagherbandi M. and Eshagh M. (2012), Recovery of Moho's undulations based on the Vening Meinesz-Moritz theory from satellite gravity gradiometry data: A simulation study. Advances in Space Research 49 (2012) 1097–1111. doi:10.1016/j.asr.2011.12.033.
  10.  Bagherbandi M. (2012), Impact of Compensating Mass on the Topographic Mass: A Study using Isostatic and Non-Isostatic Earth Crustal Models . Acta Geod. Geoph. Hung., Vol. 47(1), pp. 1–23 (2012) DOI: 10.1556/AGeod.47.2012.1.3.
  11.  Bagherbandi M. (2012), A Comparison of three gravity inversion methods for  crustal thickness modelling in Tibet plateau. Journal of Asian Earth Sciences, 43 (2012) 89-97. doi:10.1016/j.jseaes.2011.08.013.
  12. Bagherbandi M. (2012), MohoIso: a MATLAB program to determine crustal thickness by an isostatic and a global gravitational model. Computers & Geosciences 44 (2012) 177–183, doi:10.1016/j.cageo.2011.10.012.
  13. Bagherbandi M. (2012), Combination of Seismic and an Isostatic Crustal Thickness Models Using Butterworth Filter in a Spectral Approach. Journal of Asian Earth Sciences 59 (2012) 240–248. http://dx.doi.org/10.1016/j.jseaes.2012.08.008.
  14. Eshagh M and Bagherbandi M. (2012), Quality description for gravimetric and seismic Moho models of Fennoscandia through a combined adjustment. Acta Geod. Geoph. Hung., Vol. 47(4), pp. 1–14 (2012). DOI: 10.1556/AGeod.47.2012.4.2.
  15. Sjöberg L. E. and Bagherbandi M. (2012), Quasigeoid-to-geoid determination by EGM08. Earth Science Information (2012)5:87-91.  DOI 10.1007/s12145-012-0098-7.
  16. Bagherbandi M. and Sjöberg L. E. (2012), A synthetic Earth gravity model based on a topographic-isostatic model. Journal of Studia geophysica and geodetica. 56 (2012), DOI: 10.1007/s11200-011-9045-1.
  17. Bagherbandi M, Tenzer R (2013). Comparative analysis of Vening-Meinesz Moritz isostatic models using the constant and variable crust-mantle density contrast - a case study of Zealandia. J. Earth Syst. Sci. 122, No. 2, April 2013, pp. 339–348.
  18. Tenzer R, Bagherbandi M, Gladkikh V. (2012). Signature of the upper mantle density structure in the refined gravity data. Computational Geosciences. (2012) 16:975–986. DOI 10.1007/s10596-012-9298-y.
  19. Tenzer R, M. Bagherbandi P. Sirguey, and L. Sjöberg (2013), Assessment of the oceanic lithosphere density changes due to the ocean-floor spreading. (Submitted to Journal of Geodynamic)­. 
  20. Bagherbandi M. and Eshagh M. (2012), Crustal Thickness Recovery Using an Isostatic Model and GOCE Data. Earth Planets Space, 64, 1053–1057, 2012.
  21. Tenzer R, Bagherbandi M,  (2013), Reference crust-mantle density contrast beneath Antarctica based on inverse problem of isostasy and CRUST2.0 seismic model. Earth Sciences Research Journal, Vol. 17, No. 1 June 2013: 7-12.
  22. Tenzer R, Bagherbandi M, Vajda P. (2012), Global model of the upper mantle lateral density structure based on combining seismic and isostatic models. doi: 10.1007/s12303-013-0009-z. (Accepted in Geosciences Journal).
  23. Bagherbandi M. and Sjöberg L.E. (2012), Modelling the Density Contrast and Depth of the Moho Discontinuity by Seismic and Gravimetric-Isostatic Methods with an Application to Africa. Journal of African Earth Sciences 68 (2012) 111–120. doi:10.1016/j.jafrearsci.2012.04.003.
  24. Bagherbandi M. and Sjöberg L.E. (2012), Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors 200-201 (2012) 37–44.  http://dx.doi.org/10.1016/j.pepi.2012.04.001.
  25. Bagherbandi M. (2012), Global Earth Isostatic Model Using Smoothed Airy-Heiskanen and Vening Meinesz Hypotheses. Journal of Earth Science Informatics (2012) 5:93-104. DOI: 10.1007/s12145-012-0099-6.
  26. Tenzer R, Bagherbandi M, Vajda P. (2012), Depth-dependent density change within the continental upper mantle. Contributions to Geophysics and Geodesy, Vol. 42/1, 2012 (1-13). doi: 10.2478/v10126-012-0001-z.
  27. Tenzer R., M. Bagherbandi, C. Hwang , E. Tsui-Yu Chang (2012). Moho interface modeling beneath the Himalayas, Tibet and central Siberia using GOCO02S and DTM2006.0. Terr. Atmos. Ocean. Sci., Vol. 24, No. 4, Part I, 581-590, August 2013. doi: 10.3319/TAO.2012.11.01.02(TibXS).
  28. Bagherbandi M, Tenzer R (2013) Geoid-to-quasigeoid separation computed using the GRACE/GOCE global geopotential model GOCO02S – a case study of Himalayas, Tibet and central Siberia. Terrestrial, Atmospheric and Oceanic Sciences, 24(1): 59-68; doi: 10.3319/TAO.2012.09.17.02(TT).
  29. Bagherbandi M. and Sjöberg L.E. (2013), Improving Gravimetric-Isostatic Models of Crustal Depth by Correcting for Non-Isostatic Effects and Using CRUST2.0. Earth Science Review. February 2013, Pages 29–39. Doi:10.1016/j.earscirev.2012.12.002. Doi:10.1016/j.earscirev.2012.12.002
  30.  Novak P., R. Tenzer, M. Eshagh,  M. Bagherbandi, (2013). Evaluation of gravitational gradients generated by Earth's crustal structures. Computers & Geosciences 51 (2013) 22-33. http://dx.doi.org/10.1016/j.cageo.2012.08.006.
  31. R. Tenzer and M. Bagherbandi, (2012). Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. International Journal of Geosciences, 2012, 3, 918-929 doi:10.4236/ijg.2012.325094.
  32. Bagherbandi M., Tenzer R., Sjöberg L. E., Novak P. (2013). Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. Journal of Geodynamics 66 (2013) 25– 37. http://dx.doi.org/10.1016/j.jog.2013.01.002
  33. Sjöberg L. E. and Bagherbandi M. (2013). A study on the Fennoscandian post-glacial rebound as observed by present-day uplift rates and gravity field model GOCO02S. Acta Geod Geophys (2013) 48:317–331DOI 10.1007/s40328-013-0025-5.
  34. Bagherbandi M., Tenzer R. and Sjöberg L.E. (2014). Moho depth uncertainties in the Vening-Meinesz Moritz inverse problem of isostasy. Stud. Geophys. Geod., 58 (2014), 1-xxx, DOI: 10.1007/s11200-013-1258-z
  35. Tenzer R., Bagherbandi M., Sjöberg L.E. (2015). Comparison of various isostatic marine gravity disturbances. Journal of Earth System Science: Volume 124, Issue 6 (2015), Page 1235-1245.
  36. Tenzer R, Bagherbandi M, Chen W, Sjöberg LE (2016). Global isostatic gravity maps from satellite missions and their applications in the lithospheric structure studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; doi: 10.1109/JSTARS.2016.2556219
  37. Sjöberg L.E., Bagherbandi M. and Tenzer R. (2015). On Gravity inversion by no-topography and rigorous  isostatic gravity anomalies. Pure and Applied Geophysics. October 2015, Volume 172, Issue 10, pp 2669-2680. DOI 10.1007/s00024-015-1032-y.
  38. Tenzer R, Bagherbandi M, Sjöberg LE and Novak P. (2015). Isostatic crustal thickness under the Tibetan Plateau and Himalayas from satellite gravity gradiometry data. Earth Sciences Research Journal. Vol. 19, No. 2 (December, 2015): 97 – 106. DOI: http://dx.doi.org/10.15446/esrj.v19n2.44574.
  39. Tenzer Robert, Wenjin Chen, Dmitrios Tsoulis, Mohammad Bagherbandi, Lars E. Sjöberg, Pavel Novák (2015). Analysis of the refined CRUST1.0 crustal model and its gravity field. Surveys in Geophysics (2015) 36:139-165. DOI: 10.1007/s10712-12-014-9299-6.
  40. Bagherbandi M., Robert Tenzer, Lars E. Sjöberg and Majid Abrehdary (2014). On the residual isostatic topography effect in the gravimetric Moho determination. Journal of Geodynamics 83 (2015) 28–36. http://dx.doi.org/10.1016/j.jog.2014.11.002.
  41. Sjöberg L.E., Abrehdary M. and Bagherbandi M. (2014). The observed geoid height versus Airy's and Pratt's isostatic models using matched asymptotic expansions. Acta Geod Geophys (2014) 49:473–490. DOI 10.1007/s40328-014-0064-6.
  42. Tenzer R, Bagherbandi M. (2014). Theoretical deficiences of the isostatic models for modelling the Moho geometry along the convergent continental tectonic plate boundaries Journal of Earth Science. DOI: 10.1007/s12583-015-0608-x
  43. Eshagh M. and Bagherbandi M. (2014). Combined Moho Estimators. Geodynamics Research International Bulletin. Vol. (I) - No. 03.
  44. Tenzer R., Wenjin Chen, Bagherbandi M , Vajda P. (2014). Evidence of the ocean-floor spreading in marine gravity data. (Submitted to Intenational Geology Review).
  45. Bagherbandi M., Sjöberg L.E., Tenzer R. and Abrehdary M., (2015). A New Fennoscandian Crustal Thickness Model based on CRUST1.0 and Gravimetric Isostatic Approach. Earth-Science Reviews 145 (2015) 132–145. DOI: 10.1016/j.earscirev.2015.03.003.
  46. Abrehdary M., L E Sjöberg and M Bagherbandi, (2014). Combined Moho parameters determination using CRUST1.0 and Vening Meinez-Moritz Model.  Journal of Earth Science. August 2015, Volume 26, Issue 4, pp 607-616.
  47. Bagherbandi M. (2015). Deformation monitoring using different adjustment methods: A simulated study. KSCE Journal of Civil Engineering. pp. 1-8. DOI 10.1007/s12205-015-0454-5.
  48. Abrehdary M., L E Sjöberg and M Bagherbandi, (2015). Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinez-Moritz method. Journal Acta Geodaetica et Geophysica. pp. 1-13. DOI 10.1007/s40328-015-0116-6.
  49. Tenzer R., and Bagherbandi M., (2014). Comparative study of the uniform and variable Moho density contrast in the Vening Meinesz-Moritz’s isostatic scheme for the gravimetric Moho recovery. In: Jin SG (Ed) 3rd International Gravity Field Service (IGFS) General Assembly in Shanghai, China, IAG Symposia, Springer-Verlag Berlin Heidelberg (accepted: 06/12/2014).
  50. Abrehdary M., L E Sjöberg and M Bagherbandi, (2016). The spherical terrain correction and its effect on the gravimetric-isostatic Moho determination. Geophys. J. Int. (January, 2016) 204 (1): 262-273.doi: 10.1093/gji/ggv450
  51. Abrehdary M., L E Sjöberg, M Bagherbandi and D. Sampietro, (2017). Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2017-0019
  52. Bagherbandi M., Bai Y., Sjöberg L.E., Tenzer R., Abrehdary M., Miranda S., Sanchez J. M.A.  (2017). Effect of the lithospheric thermal state on the Moho interface: A case study in South America. Journal of South American Earth Science. Doi: 10.1016/j.jsames.2017.02.010
  53. Baranov A.,  Tenzer R., Bagherbandi M., (2018). Combined gravimetric-seismic crustal model for Antarctica. Surv Geophys (2018) 39:23–56. https://doi.org/10.1007/s10712-017-9423-5.
  54. Shafiei Joud Mehdi S., Lars E. Sjöberg, Mohammad Bagherbandi, (2017). Use of GRACE data to detect the present land uplift rate in Fennoscandia, Geophysical Journal International, Volume 209, Issue 2, 1 May 2017, Pages 909–922, https://doi.org/10.1093/gji/ggx063
  55. Gido N.A.A., Bagherbandi M., Sjöberg L. (2018). A gravimetric method to determine Horizontal Stress field due to flow in mantle in Fennoscandia. Geoscience Journal. https://doi.org/10.1007/s12303-018-0046-8.
  56. Robert Tenzer, Wenjin Chen, Alexey Baranov, Mohammad Bagherbandi (2018). Gravity maps of Antarctic lithospheric structure from remote-sensingand seismic data. Pure and Applied Geophysics. June 2018, Volume 175, Issue 6, pp 2181–2203.
  57. Robert Tenzer; Ismael Foroughi; Lars E Sjöberg; Mohammad Bagherbandi; Christian Hirt and Martin Pitoňák, (2018). Definition of height systems for telluric planets and moons. Surveys in Geophysics. 10.1007/s10712-017-9457-8
  58. Alexey Baranov, Mohammad Bagherbandi, Robert Tenzer, (2018). Combined gravimetric-seismic Moho model of Tibet. Geosciences 2018, 8, 461; doi:10.3390/geosciences8120461.
  59. Gido N.A.A., Bagherbandi M., Sjöberg L. and Tenzer R. (2019). Studying permafrost by integrating satellite and in situ data in the northern high-latitude regions. Acta Geophysica (2019) 67:721–734. https://doi.org/10.1007/s11600-019-00276-4
  60. Amin H., Sjöberg L. and Bagherbandi M., (2019). A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters. Journal of Geodesy, https://doi.org/10.1007/s00190-019-01293-3.
  61.    Amin H., Bagherbandi M., Sjöberg L., (2020). Quantifying barystatic sea-level change from altimeters, GRACE and Argo observations over 2005 to 2016.  Advances in Space Research, 65 (8), 1922-1940. 10.1016/j.asr.2020.01.029.
  62.     Bagherbandi M., and Gido N. A.A., (2020). Study on isostatic state and seismicity in the East African Rift. Submitted to Journal of Earth Science.
  63.  Gido N., Amin H., Bagherbandi M., and Nilfouroushan F., (2020). Satellite monitoring of mass changes and ground subsidence in Sudan’s oil fields using GRACE and Sentinel-1 data. Remote Sens. 2020, 12(11), 1792; https://doi.org/10.3390/rs12111792. 
  64. Shirazian M., Jazireeyan I., Bagherbandi M., (2020). Reality measure of the published GPS satellite ephemeris uncertainties. Journal of Spatial Science. DOI: 10.1080/14498596.2020.1746702.
  65. Gido, N.A.A., Bagherbandi, M., Nilfouroushan. F. (2020). Localized Subsidence Zones in Gävle City Detected by Sentinel-1 PSI and Leveling Data. Remote Sens. 2020, 12(16), 2629; https://doi.org/10.3390/rs12162629.
     

BOOK

  1. Gravity Inversion and Integration: Theory and Applications in Geodesy and Geophysics. Lars E. Sjöber and Mohammad Bagherbandi, 2017. Springer.
  2. Earth Crustal Modelling: Geodetic applications of the Vening Meinesz-Mortiz hypothesis:  by Mohammad Bagherbandi and Lars E. Sjöberg. Publisher: LAP LAMBERT Academic Publishing (2011).   ISBN-10: 3844397566 ISBN-13: 978-3844397567.
  3. Encyclopedia of Geodesy, Editor: Grafarend, Erik (Ed.) Chapter Isostasy. Springer. ISBN 978-3-319-01868-3