Hoppa till huvudinnehållet
Till KTH:s startsida Till KTH:s startsida

Publikationer av Per Larsson

Refereegranskade

Artiklar

[1]
[4]
G. Lo Re et al., "Melt processable cellulose fibres engineered for replacing oil-based thermoplastics," Chemical Engineering Journal, vol. 458, s. 141372, 2023.
[5]
P. Elf et al., "Molecular Dynamics Simulations of Cellulose and Dialcohol Cellulose under Dry and Moist Conditions," Biomacromolecules, vol. 24, no. 6, s. 2706-2720, 2023.
[7]
A. Y. Mehandzhiyski et al., "Microscopic Insight into the Structure-Processing-Property Relationships of Core-Shell Structured Dialcohol Cellulose Nanoparticles," ACS Applied Bio Materials, vol. 5, no. 10, s. 4793-4802, 2022.
[8]
Y. C. Görür et al., "Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials," ACS Applied Nano Materials, vol. 5, no. 7, s. 9188-9200, 2022.
[10]
A. B. Fall et al., "Spinning of Stiff and Conductive Filaments from Cellulose Nanofibrils and PEDOT:PSS Nanocomplexes," ACS Applied Polymer Materials, vol. 4, no. 6, s. 4119-4130, 2022.
[14]
J. Sethi, L. Wågberg och P. A. Larsson, "Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays," Carbohydrate Polymers, vol. 295, 2022.
[15]
Y. C. Görür et al., "Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters," ACS Applied Materials and Interfaces, vol. 13, no. 27, s. 32467-32478, 2021.
[20]
K. Mystek et al., "In Situ Modification of Regenerated Cellulose Beads : Creating All-Cellulose Composites," Industrial & Engineering Chemistry Research, vol. 59, no. 7, s. 2968-2976, 2020.
[21]
Y. C. Görür, P. A. Larsson och L. Wågberg, "Self-Fibrillating Cellulose Fibers : Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers," Biomacromolecules, vol. 21, no. 4, s. 1480-1488, 2020.
[23]
K. Mystek et al., "Wet-expandable capsules made from partially modified cellulose," Green Chemistry, vol. 22, no. 14, s. 4581-4592, 2020.
[24]
[26]
V. López Durán et al., "Effect of Chemical Functionality on the Mechanical and Barrier Performance of Nanocellulose Films," ACS APPLIED NANO MATERIALS, vol. 1, no. 4, s. 1959-1967, 2018.
[27]
V. López Durán et al., "Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength," ACS Sustainable Chemistry and Engineering, vol. 6, no. 8, s. 9951-9957, 2018.
[28]
J. Erlandsson et al., "On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels," Journal of Materials Chemistry A, vol. 6, no. 40, s. 19371-19380, 2018.
[29]
L. Salmén och P. A. Larsson, "On the origin of sorption hysteresis in cellulosic materials," Carbohydrate Polymers, vol. 182, s. 15-20, 2018.
[31]
[32]
J. Henschen et al., "Bacterial adhesion to polyvinylamine-modified nanocellulose films," Colloids and Surfaces B : Biointerfaces, vol. 151, s. 224-231, 2017.
[33]
R. Hollertz et al., "Chemically modified cellulose micro- and nanofibrils as paper-strength additives," Cellulose, vol. 24, no. 9, s. 3883-3899, 2017.
[35]
J. Henschen et al., "Contact-active antibacterial aerogels from cellulose nanofibrils," Colloids and Surfaces B : Biointerfaces, vol. 146, s. 415-422, 2016.
[36]
J. Erlandsson et al., "Macro- and mesoporous nanocellulose beads for use in energy storage devices," APPLIED MATERIALS TODAY, vol. 5, s. 246-254, 2016.
[38]
N. T. Cervin et al., "Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying," ACS Applied Materials and Interfaces, vol. 8, no. 18, s. 11682-11689, 2016.
[39]
P. A. Larsson och L. Wågberg, "Towards natural-fibre-based thermoplastic films produced by conventional papermaking," Green Chemistry, vol. 18, no. 11, s. 3324-3333, 2016.
[41]
P. A. Larsson, L. A. Berglund och L. Wågberg, "Ductile All-Cellulose Nanocomposite Films Fabricated from Core-Shell Structured Cellulose Nanofibrils," Biomacromolecules, vol. 15, no. 6, s. 2218-2223, 2014.
[42]
P. A. Larsson, L. A. Berglund och L. Wågberg, "Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils," Cellulose, vol. 21, no. 1, s. 323-333, 2014.
[43]
C. Carrick, L. Wågberg och P. A. Larsson, "Immunoselective cellulose nanospheres : a versatile platform for nanotheranostics," ACS Macro Letters, vol. 3, no. 11, s. 1117-1120, 2014.
[44]
P. A. Larsson, T. Pettersson och L. Wågberg, "Improved barrier films of cross-linked cellulose nanofibrils: a microscopy study," Green materials, vol. 2, no. 4, s. 163-168, 2014.
[45]
C. Carrick et al., "Native and functionalized micrometre-sized cellulose capsules prepared by microfluidic flow focusing," RSC Advances, vol. 4, no. 37, s. 19061-19067, 2014.
[46]
E. Gustafsson, P. A. Larsson och L. Wågberg, "Treatment of cellulose fibres with polyelectrolytes and wax colloids to create tailored highly hydrophobic fibrous networks," Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol. 414, s. 415-421, 2012.
[48]
P. A. Larsson, M. Hoc och L. Wågberg, "A novel approach to study the hydroexpansion mechanisms of paper using spray technique," Nordic Pulp & Paper Research Journal, vol. 24, no. 4, s. 371-380, 2009.
[49]
P. A. Larsson och L. Wågberg, "Influence of fibre-fibre joint properties on the dimensional stability of paper," Cellulose, vol. 15, no. 4, s. 515-525, 2008.
[50]
P. A. Larsson, M. Gimaker och L. Wågberg, "The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper," Cellulose, vol. 15, no. 6, s. 837-847, 2008.

Icke refereegranskade

Kapitel i böcker

[51]
J. O. Zoppe, P. A. Larsson och O. Cusola, "Surface Modification of Nanocellulosics and Functionalities," i Lignocellulosics : Renewable Feedstock for (Tailored) Functional Materials and Nanotechnology, : Elsevier BV, 2020, s. 17-63.

Avhandlingar

[52]
P. A. Larsson, "Hygro- and hydroexpansion of paper : Influence of fibre-joint formation and fibre sorptivity," Doktorsavhandling Stockholm : KTH, Trita-CHE-Report, 2010:8, 2010.
[53]
P. A. Larsson, "Dimensional Stability of Paper : Influence of Fibre-Fibre Joints and Fibre Wall Oxidation," Licentiatavhandling Stockholm : KTH, Trita-CHE-Report, 2008:8, 2008.
Senaste synkning med DiVA:
2024-04-21 00:19:02