Predictability, Prediction, and Control of Latency in 5G and Beyond
From Theoretical to Data-Driven Approaches
Tid: Må 2025-06-09 kl 10.00
Plats: D3, Lindstedtvägen 9
Videolänk: https://kth-se.zoom.us/s/68395855098
Språk: Engelska
Ämnesområde: Elektro- och systemteknik
Respondent: Seyed Samie Mostafavi , Teknisk informationsvetenskap
Opponent: Professor Roberto Verdone, Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
Handledare: Professor James Gross, Teknisk informationsvetenskap; Professor György Dán, Nätverk och systemteknik
QC 20250509
Abstract
Den explosionsartade tillväxten av mobil kommunikation och spridningen av realtidsapplikationer, såsom industriell automation och utökad verklighet (XR), har skapat enastående krav på ultratillförlitlig kommunikation med låg fördröjning (URLLC) i trådlösa nätverk. Till exempel måste data i industriella slutna styrsystem ¨överföras inom en deadline på högst några millisekunder; ¨överträdelser kan leda till kostsamma fel och måste därför inträffa med sannolikheter under 0,0001 (eller, en tillförlitlighet över 0,9999). Denna avhandling behandlar den kritiska utmaningen att prediktera och kontrollera fördröjningen mellan sändare till mottagare i dessa dynamiska och stokastiska miljöer, och minskar skillnaden mellan den inneboende slumpmässigheten i trådlös kommunikation och de deterministiska prestandagarantier som krävs av tidskänsliga applikationer. I denna avhandling antas en tvådelad metod som kombinerar noggrann teoretisk analys med praktiska, datadrivna metoder. Först introduceras ett ramverk för att analysera förutsägbarhet som kvantifierar de inneboende gränserna för fördröjningsprognoser i kommunikationsnätverk. Genom att studera Markovsystem, däribland enkel- och multihoppköer, härleds exakta uttryck och spektrumbaserade övre gränser för förutsägbarhet, vilket belyser hur nätverkstopologi, tillståndsövergångar och observationsdefekter påverkar resultaten.
Utifrån denna grund utvecklades och implementerades datadrivna tekniker för probabilistisk fördröjningsprediktion. Ett viktigt bidrag är en metod för prediktion som integrerar extremvärdesteori (EVT) i ett ramverk för blandningstäthetsnätverk, vilket avsevärt förbättrar förmågan att prediktera sällsynta, höga fördröjningar som är avgörande för URLLC. För att demonstrera den praktiska nyttan av dessa prediktioner presenteras ”Delta,”ett nytt aktivt köhanteringssystem. Delta integrerar, i realtid, prediktioner av sannolikheten för fördröjningsöverträdelser i beslutsprocessen för paketborttagning, vilket minskar fördröjningsöverträdelser avsevärt.
För att validera dessa metoder utvecklades testbädden ExPECA och ramverket EDAF, som möjliggör högupplösta mätningar och uppdelning av fördröjningens komponenter i verkliga 5G-system. Omfattande experiment på både kommersiell 5G-utrustning och mjukvarudefinierade radioplattformar baserade på Open Air Interface bekräftade den förbättrade noggrannheten och effektiviteten hos de föreslagna EVT-förbättrade modellerna. Vidare utvecklades temporala prediktionsmodeller som använder LSTM- och Transformer-arkitekturer som visade högre träffsäkerhet än referensmetoder i verkliga 5G-nätverksexperiment, då de fångar de tidsvarierande dynamikerna i trådlösa nätverk och möjliggör exakta flerstegsprognoser.
Denna avhandling driver framåt forskningen om fördröjningsprediktion och -kontroll i trådlösa nätverk och erbjuder både teoretiska grunder och praktiska lösningar för tidskänsliga applikationer. Resultaten har stor betydelse för utformningen och driften av nästa generations trådlösa nätverk och banar väg för mer pålitlig kommunikation. Framtida arbete ska/borde/kan (will/should/can) fokusera på att integrera dessa prediktionsmodeller för att optimera nätverket, och utvidga ramverket till att omfatta bredare kvalitetsmätningar och nya trådlösa teknologier.