Artiklar
2024
[1]
N. R. Chowdhury et al.,
"Influence of state of charge window on the degradation of Tesla lithium-ion battery cells,"
Journal of Energy Storage, vol. 76, 2024.
[2]
D. Zenkert et al.,
"Multifunctional carbon fibre composites using electrochemistry,"
Composites Part B : Engineering, vol. 273, 2024.
[3]
Y. D. Yucel et al.,
"LiFePO4-coated carbon fibers as positive electrodes in structural batteries : Insights from spray coating technique,"
Electrochemistry communications, vol. 160, s. 107670, 2024.
[4]
A. Mikheenkova et al.,
"Visualizing ageing-induced heterogeneity within large prismatic lithium-ion batteries for electric cars using diffraction radiography,"
Journal of Power Sources, vol. 599, 2024.
[5]
K. Teenakul et al.,
"Treatment of carbon electrodes with Ti3C2Tx MXene coating and thermal method for vanadium redox flow batteries : a comparative study,"
RSC Advances, vol. 14, no. 18, s. 12807-12816, 2024.
[6]
Y. D. Yucel et al.,
"Enhancing structural battery performance: Investigating the role of conductive carbon additives in LiFePO<inf>4</inf>-Impregnated carbon fiber electrodes,"
Composites Science And Technology, vol. 251, 2024.
[7]
O. Y. Abdelaziz et al.,
"Recent strides toward transforming lignin into plastics and aqueous electrolytes for flow batteries,"
iScience, vol. 27, no. 4, 2024.
[8]
F. Zakeri et al.,
"Al-Ce co-doped BaTiO3 nanofibers as a high-performance bifunctional electrochemical supercapacitor and water-splitting electrocatalyst,"
Scientific Reports, vol. 14, no. 1, 2024.
[9]
V. Nagda, H. Ekström och A. Kulachenko,
"Impact of Mechanical Degradation in Polycrystalline NMC Particle on the Electrochemical Performance of Lithium-Ion Batteries,"
Journal of the Electrochemical Society, vol. 171, no. 6, 2024.
[10]
T. Wang et al.,
"Pilot-scale study of membrane-coated cathodes : Achieving high cathodic efficiency and outstanding stability in chlorate electrolysis,"
Electrochimica Acta, vol. 497, 2024.
[11]
M. Rossini et al.,
"Rational design of membrane electrode assembly for anion exchange membrane water electrolysis systems,"
Journal of Power Sources, vol. 614, 2024.
[12]
M. Andersson et al.,
"Electrochemical model-based aging-adaptive fast charging of automotive lithium-ion cells,"
Applied Energy, vol. 372, 2024.
[13]
K. Bouton et al.,
"A structural battery with carbon fibre electrodes balancing multifunctional performance,"
Composites Science And Technology, vol. 256, 2024.
[14]
A. Lindberg et al.,
"Gas phase composition of a NiMH battery during a work cycle,"
RSC Advances, vol. 14, no. 28, s. 19996-20003, 2024.
[15]
H. Ekström,
"Combining wall interactions, fluid momentum balances and the Maxwell-Stefan equations for gas transport in porous media: An alternative approach,"
International Journal of Thermofluids, vol. 21, 2024.
[16]
H. Rashtchi et al.,
"Nanostructured multilayer Cr/CrN coatings on 316L stainless steel for proton exchange membrane fuel cell bipolar plates,"
Fuel, vol. 377, 2024.
[17]
E. V. Ramirez, R. Wreland Lindström och A. Khataee,
"Electrochemical and Kinetic Analysis of Manganese Electrolytes for Redox Flow Batteries,"
Journal of the Electrochemical Society, vol. 171, no. 8, 2024.
2023
[1]
A. Khataee et al.,
"Poly(arylene alkylene)s functionalized with perfluorosulfonic acid groups as proton exchange membranes for vanadium redox flow batteries,"
Journal of Membrane Science, vol. 671, 2023.
[2]
A. J. Smith et al.,
"Localized lithium plating under mild cycling conditions in high-energy lithium-ion batteries,"
Journal of Power Sources, vol. 573, s. 233118, 2023.
[3]
M. Ohrelius et al.,
"Lifetime Limitations in Multi-Service Battery Energy Storage Systems,"
Energies, vol. 16, no. 7, 2023.
[4]
A. Mikheenkova et al.,
"Ageing of High Energy Density Automotive Li-Ion Batteries : The Effect of Temperature and State-of-Charge,"
Journal of the Electrochemical Society, vol. 170, no. 8, 2023.
[5]
W. Gao et al.,
"Construction of diluted magnetic semiconductor to endow nonmagnetic semiconductor with spin-regulated photocatalytic performance,"
Nano Energy, vol. 110, 2023.
[6]
T. Wang et al.,
"Rational design of a membrane-coated cathode for selective electrochemical hydrogen evolution in chlorate electrolysis,"
Electrochimica Acta, vol. 466, s. 143010, 2023.
[7]
I. Salmeron-Sanchez et al.,
"Zwitterionic poly(terphenylene piperidinium) membranes for vanadium redox flow batteries,"
Chemical Engineering Journal, vol. 474, 2023.
[8]
I. Terekhina et al.,
"Electrocatalytic Oxidation of Glycerol to Value-Added Compounds on Pd Nanocrystals,"
ACS Applied Nano Materials, vol. 6, no. 13, s. 11211-11220, 2023.
[9]
J. White et al.,
"Glycerol Electrooxidation at Industrially Relevant Current Densities Using Electrodeposited PdNi/Nifoam Catalysts in Aerated Alkaline Media,"
Journal of the Electrochemical Society, vol. 170, no. 8, 2023.
[10]
H. Wang et al.,
"MnO2/Mn2+ chemistry: Charging protocol and electrolyte regulation,"
Energy Storage Materials, vol. 63, 2023.
[11]
M. Streb et al.,
"Diagnosis and prognosis of battery degradation through re-evaluation and Gaussian process regression of electrochemical model parameters,"
Journal of Power Sources, vol. 588, 2023.
[12]
A. M. Cornell, C. Weidlich och K. Bouzek,
"Editorial : European symposium on electrochemical engineering,"
Electrochemical Science Advances, vol. 3, no. 2, 2023.
[13]
Z. Ansarian et al.,
"Titanium germanium carbide MAX phase electrocatalysts for supercapacitors and alkaline water electrolysis processes,"
Materials Today Chemistry, vol. 33, 2023.
[14]
C. Ajpi Condori et al.,
"Synthesis and spectroscopic characterization of Fe3+-BDC metal organic framework as material for lithium ion batteries,"
Journal of Molecular Structure, vol. 1272, s. 134127-134127, 2023.
[15]
M. Streb et al.,
"Investigating re-parametrization of electrochemical model-based battery management using real-world driving data,"
eTransporation, vol. 16, 2023.
[16]
P. Gupta et al.,
"Layer-Resolved Mechanical Degradation of a Ni-Rich Positive Electrode,"
Batteries, vol. 9, no. 12, s. 575, 2023.
[17]
A. Anil et al.,
"Effect of pore mesostructure on the electrooxidation of glycerol on Pt mesoporous catalysts,"
Journal of Materials Chemistry A, vol. 11, no. 31, s. 16570-16577, 2023.
[18]
Y. D. Yucel et al.,
"Powder-impregnated carbon fibers with lithium iron phosphate as positive electrodes in structural batteries,"
Composites Science And Technology, vol. 241, s. 110153, 2023.
[19]
O. Diaz-Morales et al.,
"Catalytic effects of molybdate and chromate–molybdate films deposited on platinum for efficient hydrogen evolution,"
Journal of chemical technology and biotechnology (1986), vol. 98, no. 5, s. 1269-1278, 2023.
[20]
E. Marra et al.,
"ORR activity and stability of carbon supported Pt3Y thin films in PEMFCs,"
Electrochimica Acta, vol. 472, 2023.
[21]
M. Butori et al.,
"The effect of oxygen partial pressure and humidification in proton exchange membrane fuel cells at intermediate temperature (80-120 degrees C),"
Journal of Power Sources, vol. 563, s. 232803, 2023.
[22]
T. Novalin et al.,
"Demonstrating the absence of metal ion contamination in operando PEM fuel cells utilizing unmodified stainless steel bipolar plates,"
Applied Energy, vol. 349, 2023.
[23]
M. Cattaruzza et al.,
"Hybrid polymer-liquid lithium ion electrolytes : effect of porosity on the ionic and molecular mobility,"
Journal of Materials Chemistry A, vol. 11, no. 13, s. 7006-7015, 2023.
2022
[1]
G. Kucinskis et al.,
"Enhanced Electrochemical Properties of Na0.67MnO2 Cathode for Na-Ion Batteries Prepared with Novel Tetrabutylammonium Alginate Binder,"
BATTERIES-BASEL, vol. 8, no. 1, s. 6, 2022.
[2]
C. Ajpi Condori et al.,
"Synthesis and spectroscopic characterization of NiII coordination network: : Poly-[tris(µ4-Benzene-1,4-dicarboxylato)-tetrakis(µ1-dimethylformamide-κ1O)-trinickel(II)] as material for lithium ion batteries,"
Journal of Molecular Structure, vol. 1265, s. 133316, 2022.
[3]
E. Marra et al.,
"Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC,"
Electrochimica Acta, vol. 435, s. 141376-141376, 2022.
[4]
M. Rossini et al.,
"Nanostructured Lead Electrodes with Reduced Graphene Oxide for High-Performance Lead-Acid Batteries,"
BATTERIES-BASEL, vol. 8, no. 11, 2022.
[5]
J. Y. Ko et al.,
"Porous Electrode Model with Particle Stress Effects for Li(Ni1/3Co1/3Mn1/3)O-2 Electrode,"
Journal of the Electrochemical Society, vol. 169, no. 11, s. 119001, 2022.
[6]
S. Suewatanakul et al.,
"Conceptual Design of a Hybrid Hydrogen Fuel Cell/Battery Blended-Wing-Body Unmanned Aerial Vehicle—An Overview,"
Aerospace, vol. 9, no. 5, s. 275-275, 2022.
[7]
P. Svens et al.,
"Evaluating Performance and Cycle Life Improvements in the Latest Generations of Prismatic Lithium-Ion Batteries,"
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, vol. 8, no. 3, s. 3696-3706, 2022.
[8]
A. khataee et al.,
"Anion exchange membrane water electrolysis using Aemion™ membranes and nickel electrodes,"
Journal of Materials Chemistry A, vol. 10, no. 30, s. 16061-16070, 2022.
[9]
L. Strandberg et al.,
"Comparison of Oxygen Adsorption and Platinum Dissolution in Acid and Alkaline Solutions Using Electrochemical Quartz Crystal Microbalance,"
ChemElectroChem, vol. 9, no. 22, 2022.
[10]
Y. Fang et al.,
"Quantifying lithium lost to plating and formation of the solid-electrolyte interphase in graphite and commercial battery components,"
Applied Materials Today, vol. 28, 2022.
[11]
Y. Fang et al.,
"Lithium insertion in hard carbon as observed by 7Li NMR and XRD. The local and mesoscopic order and their relevance for lithium storage and diffusion,"
Journal of Materials Chemistry A, vol. 10, no. 18, s. 10069-10082, 2022.
[12]
J. Börjesson Axén et al.,
"Evaluation of hysteresis expressions in a lumped voltage prediction model of a NiMH battery system in stationary storage applications,"
Journal of Energy Storage, vol. 48, s. 103985, 2022.
[13]
J. White et al.,
"Electrodeposited PdNi on a Ni rotating disk electrode highly active for glycerol electrooxidation in alkaline conditions,"
Electrochimica Acta, vol. 403, 2022.
[14]
X. Yu et al.,
"Hydrogen Evolution Linked to Selective Oxidation of Glycerol over CoMoO 4 —A Theoretically Predicted Catalyst,"
Advanced Energy Materials, vol. 12, no. 14, s. 2103750-2103750, 2022.
[15]
M. Streb et al.,
"Improving Li-ion battery parameter estimation by global optimal experiment design,"
Journal of Energy Storage, vol. 56, 2022.
[16]
Z. Qiu et al.,
"Green hydrogen production via electrochemical conversion of components from alkaline carbohydrate degradation,"
International journal of hydrogen energy, vol. 47, no. 6, s. 3644-3654, 2022.
[17]
M. Andersson et al.,
"p Parametrization of physics-based battery models from input-output data : A review of methodology and current research,"
Journal of Power Sources, vol. 521, s. 230859, 2022.
[18]
E. Lallo, A. khataee och R. Wreland Lindström,
"Vanadium Redox Flow Battery Using Aemion((TM)) Anion Exchange Membranes,"
Processes, vol. 10, no. 2, 2022.
[19]
C. Deutsch et al.,
"Evaluation of energy management strategies for fuel cell/battery-powered underwater vehicles against field trial data,"
Energy Conversion and Management : X, vol. 14, s. 100193-100193, 2022.
[20]
T. Novalin et al.,
"Concepts for preventing metal dissolution from stainless-steel bipolar plates in PEM fuel cells,"
Energy Conversion and Management, vol. 253, 2022.
[21]
R. Harnden et al.,
"Multifunctional Carbon Fiber Composites : A Structural, Energy Harvesting, Strain-Sensing Material,"
ACS Applied Materials and Interfaces, vol. 14, no. 29, s. 33871-33880, 2022.
2021
[1]
M. Cassir och C. Lagergren,
"Guest editorial-IWMC2019,"
International journal of hydrogen energy, vol. 46, no. 28, s. 14897-14897, 2021.
[2]
A. Chiche et al.,
"Design of experiment to predict the time between hydrogen purges for an air-breathing PEM fuel cell in dead-end mode in a closed environment,"
International journal of hydrogen energy, vol. 46, no. 26, s. 13806-13817, 2021.
[3]
P. E. Campana et al.,
"Li-ion batteries for peak shaving, price arbitrage, and photovoltaic self-consumption in commercial buildings : A Monte Carlo Analysis,"
Energy Conversion and Management, vol. 234, 2021.
[4]
R. Harnden, D. Zenkert och G. Lindbergh,
"Potassium-insertion in polyacrylonitrile-based carbon fibres for multifunctional energy storage, morphing, and strain-sensing,"
Carbon, vol. 171, s. 671-680, 2021.
[5]
A. Khataee et al.,
"Asymmetric cycling of vanadium redox flow batteries with a poly(arylene piperidinium)-based anion exchange membrane,"
Journal of Power Sources, vol. 483, 2021.
[6]
W. Johannisson et al.,
"A screen-printing method for manufacturing of current collectors for structural batteries,"
Multifunctional Materials, vol. 4, no. 3, s. 035002, 2021.
[7]
A. Chiche et al.,
"Feasibility and impact of a Swedish fuel cell-powered rescue boat,"
Ocean Engineering, vol. 234, s. 109259-109259, 2021.
[8]
A. Chiche et al.,
"A Strategy for Sizing and Optimizing the Energy System on Long-Range AUVs,"
IEEE Journal of Oceanic Engineering, vol. 46, no. 4, s. 1132-1143, 2021.
[9]
X. Yu et al.,
"Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoOx/Pt Catalyst,"
Small, vol. 17, no. 44, 2021.
[10]
D. Martín-Yerga et al.,
"Structure–Reactivity Effects of Biomass-based Hydroxyacids for Sustainable Electrochemical Hydrogen Production,"
ChemSusChem, vol. 14, no. 8, s. 1902-1912, 2021.
[11]
F. A. Benavente Araoz et al.,
"An Aging Study of NCA/Si-Graphite Lithium-Ion Cells for Off-Grid Photovoltaic Systems in Bolivia,"
Journal of the Electrochemical Society, vol. 168, no. 10, 2021.
[12]
H. Grimler et al.,
"Determination of Kinetic Parameters for the Oxygen Reduction Reaction on Platinum in an AEMFC,"
Journal of the Electrochemical Society, vol. 168, no. 12, s. 124501, 2021.
[13]
A. Carlson et al.,
"The Hydrogen Electrode Reaction in the Anion Exchange Membrane Fuel Cell,"
Journal of the Electrochemical Society, vol. 168, no. 3, 2021.
[14]
A. J. Smith et al.,
"Expanded In Situ Aging Indicators for Lithium-Ion Batteries with a Blended NMC-LMO Electrode Cycled at Sub-Ambient Temperature,"
Journal of the Electrochemical Society, vol. 168, no. 11, s. 110530, 2021.
[15]
A. Chiche et al.,
"Including Heat Balance When Designing the Energy System of Fuel Cell-Powered AUVs,"
Energies, vol. 14, no. 16, s. 4920-4920, 2021.
[16]
T. Novalin et al.,
"Electrochemical performance of poly(arylene piperidinium) membranes and ionomers in anion exchange membrane fuel cells,"
Journal of Power Sources, vol. 507, 2021.
[17]
D. Martin-Yerga, G. Henriksson och A. M. Cornell,
"Insights on the ethanol oxidation reaction at electrodeposited PdNi catalysts under conditions of increased mass transport,"
International journal of hydrogen energy, vol. 46, no. 2, s. 1615-1626, 2021.
[18]
A. Lindberg et al.,
"Sources of Oxygen Produced in the Chlorate Process Utilizing Dimensionally Stable Anode (DSA) Electrodes Doped by Sn and Sb,"
Industrial & Engineering Chemistry Research, vol. 60, no. 37, s. 13505-13514, 2021.
[19]
J. Börjesson Axén et al.,
"Short-Term Impact of AC Harmonics on Aging of NiMH Batteries for Grid Storage Applications,"
Materials, vol. 14, no. 5, 2021.
[20]
T. Novalin et al.,
"Trace-metal contamination in proton exchange membrane fuel cells caused by laser-cutting stains on carbon-coated metallic bipolar plates,"
International journal of hydrogen energy, vol. 46, no. 26, s. 13855-13864, 2021.
[21]
B. Eriksson et al.,
"Enhanced oxygen reduction activity with rare earth metal alloy catalysts in proton exchange membrane fuel cells,"
Electrochimica Acta, vol. 387, 2021.
[22]
L. E. Asp et al.,
"A Structural Battery and its Multifunctional Performance,"
Advanced Energy & Sustainability Research, vol. 2, no. 3, 2021.
2020
[1]
U. Mattinen et al.,
"Gas evolution in commercial Li-ion battery cells measured by on-line mass spectrometry – Effects of C-rate and cell voltage,"
Journal of Power Sources, vol. 477, 2020.
[2]
R. B. Araujo et al.,
"Elucidating the role of Ni to enhance the methanol oxidation reaction on Pd electrocatalysts,"
Electrochimica Acta, vol. 360, 2020.
[3]
H. Kim et al.,
"Feasibility of Chemically Modified Cellulose Nanofiber Membranes as Lithium-Ion Battery Separators,"
ACS Applied Materials and Interfaces, vol. 12, no. 37, s. 41211-41222, 2020.
[4]
W. Johannisson et al.,
"A residual performance methodology to evaluate multifunctional systems,"
Multifunctional Materials, vol. 3, no. 2, 2020.
[5]
J. Xu et al.,
"Characterization of the adhesive properties between structural battery electrolytes and carbon fibers,"
Composites Science And Technology, vol. 188, 2020.
[6]
S. Sandin et al.,
"Deactivation and selectivity for electrochemical ozone production at Ni- and Sb-doped SnO2 / Ti electrodes,"
Electrochimica Acta, vol. 335, 2020.
[7]
[8]
B. Endrodi et al.,
"Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces,"
Electrochimica Acta, vol. 341, 2020.
[9]
W. Johannisson et al.,
"Shape-morphing carbon fiber composite using electrochemical actuation,"
Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 14, s. 7658-7664, 2020.
[10]
D. Martín-Yerga et al.,
"In situ catalyst reactivation for enhancing alcohol electro-oxidation and coupled hydrogen generation,"
Chemical Communications, vol. 56, no. 28, s. 4011-4014, 2020.
[11]
M. Fatima et al.,
"Application of novel bacterial consortium for biodegradation of aromatic amine 2-ABS using response surface methodology,"
Journal of Microbiological Methods, vol. 174, 2020.
[12]
M. Varini et al.,
"Electrochemical techniques for characterizing LiNi Mn Co1−x−yO2 battery electrodes,"
Electrochimica Acta, vol. 359, 2020.
[13]
M. Goerlin et al.,
"Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations,"
Nature Communications, vol. 11, no. 1, 2020.
[14]
Y. Acevedo Gomez, G. Lindbergh och C. Lagergren,
"Performance Recovery after Contamination with Nitrogen Dioxide in a PEM Fuel Cell,"
Molecules, vol. 25, no. 5, 2020.
[15]
M. Varini et al.,
"On resistance and capacity of LiNi1/3Mn1/3Co1/3O2 under high voltage operation,"
Journal of Energy Storage, vol. 31, 2020.
[16]
A. Krüger et al.,
"Integration of water electrolysis for fossil-free steel production,"
International journal of hydrogen energy, vol. 45, no. 55, s. 29966-29977, 2020.
[17]
F. A. Benavente Araoz et al.,
"Effect of Partial Cycling of NCA/Graphite Cylindrical Cells in Different SOC Intervals,"
Journal of the Electrochemical Society, vol. 167, no. 040529, 2020.
[18]
J. Andersson, A. Krüger och S. Grönkvist,
"Methanol as a carrier of hydrogen and carbon in fossil-free production of direct reduced iron,"
Energy Conversion and Management : X, vol. 7, no. 100051, 2020.
[19]
C. Ajpi Condori et al.,
"Synthesis and Characterization of LiFePO4-PANI Hybrid Material as Cathode for Lithium-Ion Batteries,"
Materials, vol. 13, no. 12, 2020.
[20]
P. Kanninen et al.,
"Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes,"
Electrochimica Acta, vol. 332, 2020.
[21]
R. Brown et al.,
"Surface Composition of a Highly Active Pt3Y Alloy Catalyst for Application in Low Temperature Fuel Cells,"
Fuel Cells, vol. 20, no. 4, s. 413-419, 2020.
[22]
A. Carlson et al.,
"Fuel cell evaluation of anion exchange membranes based on poly(phenylene oxide) with different cationic group placement,"
Sustainable Energy & Fuels, vol. 4, no. 5, s. 2274-2283, 2020.
2019
[1]
F. A. Benavente Araoz et al.,
"Photovoltaic/battery system sizing for rural electrification in Bolivia:Considering the suppressed demand effect,"
Applied Energy, vol. 235, s. 519-528, 2019.
[2]
L. E. Asp et al.,
"Carbon Fibre Composite Structural Batteries: A Review,"
Functional Composites and Structures, 2019.
[3]
V. Guccini et al.,
"Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells,"
Journal of Materials Chemistry A, vol. 7, no. 43, s. 25032-25039, 2019.
[4]
S. Jannat et al.,
"Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells,"
Journal of Power Sources, vol. 435, 2019.
[5]
D. Martín-Yerga, G. Henriksson och A. M. Cornell,
"Effects of Incorporated Iron or Cobalt on the Ethanol Oxidation Activity of Nickel (Oxy)Hydroxides in Alkaline Media,"
Electrocatalysis, 2019.
[6]
D. Martín-Yerga,
"Electrochemical Detection and Characterization of Nanoparticles with Printed Devices,"
Biosensors, vol. 9, no. 2, 2019.
[7]
W. Johannisson och D. Zenkert,
"Model of a structural battery and its potential for system level mass savings,"
Multifunctional Materials, 2019.
[8]
A. Mussa et al.,
"Fast-charging effects on ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells,"
Journal of Power Sources, vol. 422, s. 175-184, 2019.
[9]
S. Mesfun et al.,
"Integration of an electrolysis unit for producer gas conditioning in a bio-synthetic natural gas plant,"
Journal of energy resources technology, vol. 141, no. 1, 2019.
[10]
H. Kim et al.,
"Lithium Ion Battery Separators Based On Carboxylated Cellulose Nanofibers From Wood,"
ACS Applied Energy Materials, vol. 2, s. 1241-1250, 2019.
[11]
B. Endrodi et al.,
"In situ formed vanadium-oxide cathode coatings for selective hydrogen production,"
Applied Catalysis B : Environmental, vol. 244, s. 233-239, 2019.
[12]
J. Y. Ko et al.,
"Porous Electrode Model with Particle Stress Effects for Li(Ni1/3Co1/3Mn1/3)O2 Electrode,"
Journal of the Electrochemical Society, 2019.
[13]
K. Peuvot et al.,
"Lignin based electrospun carbon fiber anode for sodium ion batteries,"
Journal of the Electrochemical Society, vol. 166, no. 10, s. A1984-A1990, 2019.
[14]
E. Ghadamnan, S. R. Nabavi och M. Abbasi,
"Nano LTA Zeolite in Water Softening Process: Synthesis, Characterization, Kinetic studies and process optimization by Response Surface Methodology (RSM),"
Journal of Water and Environmental Nanotechnology, vol. 4, no. 2, s. 119-138, 2019.
[15]
A. Bessman et al.,
"Aging effects of AC harmonics on lithium-ion cells,"
Journal of Energy Storage, vol. 21, s. 741-749, 2019.
[16]
M. Varini, P. E. Campana och G. Lindbergh,
"A semi-empirical, electrochemistry-based model for Li-ion battery performance prediction over lifetime,"
Journal of Energy Storage, vol. 25, 2019.
[17]
B. Endrodi et al.,
"Suppressed oxygen evolution during chlorateformation from hypochlorite in the presenceof chromium(VI),"
Journal of chemical technology and biotechnology (1986), vol. 94, no. 5, s. 1520-1527, 2019.
[18]
B. Endrodi et al.,
"Selective Hydrogen Evolution on Manganese Oxide Coated Electrodes : New Cathodes for Sodium Chlorate Production,"
ACS Sustainable Chemistry and Engineering, vol. 7, no. 14, s. 12170-12178, 2019.
[19]
B. Eriksson et al.,
"Quantifying water transport in anion exchange membrane fuel cells,"
International journal of hydrogen energy, vol. 44, no. 10, s. 4930-4939, 2019.
[20]
C. Ajpi et al.,
"Crystal structure and Hirshfeld surface analysis of poly[tris(mu(4)-benzene-1,4-dicarboxylato)tetrakis(di-methylformamide)tr inickel(II)] : a two-dimensional coordination network,"
Acta Crystallographica Section E : Crystallographic Communications, vol. 75, s. 1839-1843, 2019.
2018
[1]
G. Fredi et al.,
"Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes,"
Multifunctional Materials, vol. 1, no. 1, 2018.
[2]
M. M. Pereira da Silva Neves och D. Martín-Yerga,
"Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging,"
Biosensors, vol. 8, no. 4, 2018.
[3]
D. Martín-Yerga et al.,
"In Situ Spectroelectrochemical Monitoring of Dye Bleaching after Electrogeneration of Chlorine-Based Species : Application to Chloride Detection,"
Analytical Chemistry, vol. 90, no. 12, s. 7442-7449, 2018.
[4]
H. Lu et al.,
"Flexible and Lightweight Lithium-Ion Batteries Based on Cellulose Nanofibrils and Carbon Fibers,"
BATTERIES-BASEL, vol. 4, no. 2, 2018.
[5]
D. Martín-Yerga et al.,
"Towards single-molecule : In situ electrochemical SERS detection with disposable substrates,"
Chemical Communications, vol. 54, no. 45, s. 5748-5751, 2018.
[6]
J. Lindberg et al.,
"Li Salt Anion Effect on O-2 Solubility in an Li-O-2 Battery,"
The Journal of Physical Chemistry C, vol. 122, no. 4, s. 1913-1920, 2018.
[7]
A. Nowak et al.,
"Lignin-based carbon fibers for renewable and multifunctional lithium-ion battery electrodes,"
Holzforschung, vol. 72, no. 2, s. 81-90, 2018.
[8]
B. Endrodi et al.,
"One-Step Electrodeposition of Nanocrystalline TiO2 Films with Enhanced Photoelectrochemical Performance and Charge Storage,"
ACS Applied Energy Materials, vol. 1, no. 2, s. 851-858, 2018.
[9]
R. Harnden et al.,
"Multifunctional Performance of Sodiated Carbon Fibers,"
Journal of the Electrochemical Society, vol. 165, no. 13, s. B616-B622, 2018.
[10]
A. Mussa et al.,
"Inhomogeneous active layer contact loss in a cycled prismatic lithium-ion cell caused by the jelly-roll curvature,"
Journal of Energy Storage, vol. 20, s. 213-217, 2018.
[11]
A. Bessman et al.,
"Challenging Sinusoidal Ripple-Current Charging of Lithium-Ion Batteries,"
IEEE Transactions on Industrial Electronics, vol. 65, no. 6, s. 4750-4757, 2018.
[12]
Y. A. Gomez et al.,
"Ammonia contamination of a proton exchange membrane fuel cell,"
Journal of the Electrochemical Society, vol. 165, no. 3, s. F189-F197, 2018.
[13]
H. Ekström, B. Fridholm och G. Lindbergh,
"Comparison of lumped diffusion models for voltage prediction of a lithium-ion battery cell during dynamic loads,"
Journal of Power Sources, vol. 402, s. 296-300, 2018.
[14]
S. Mikkonen, H. Ekström och W. Thormann,
"High-resolution dynamic computer simulation of electrophoresis using a multiphysics software platform,"
Journal of Chromatography A, vol. 1532, s. 216-222, 2018.
[15]
J. Hagberg et al.,
"Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries,"
Composites Science And Technology, vol. 162, s. 235-243, 2018.
[16]
A. Cornell, M. Rodrigo och K. Bouzek,
"Special Issue : 11th European Symposium in Electrochemical Engineering (ESEE 11) Foreword,"
Journal of Applied Electrochemistry, vol. 48, no. 6, s. 559-560, 2018.
[17]
B. Endrődi et al.,
"Towards sustainable chlorate production : The effect of permanganate addition on current efficiency,"
Journal of Cleaner Production, vol. 182, s. 529-537, 2018.
[18]
M. Abbasi, J. Backstrom och A. M. Cornell,
"Fabrication of Spin-Coated Ti/TiHx/Ni-Sb-SnO2 Electrode : Stability and Electrocatalytic Activity,"
Journal of the Electrochemical Society, vol. 165, no. 9, s. H568-H574, 2018.
[19]
A. S. Mussa et al.,
"Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells,"
Journal of Power Sources, vol. 385, s. 18-26, 2018.
[20]
R. Soares et al.,
"An Experimental Setup with Alternating Current Capability for Evaluating Large Lithium-Ion Battery Cells,"
Batteries-Basel, vol. 4, no. 3, 2018.
[21]
[22]
P. Kanninen och T. Kallio,
"Activation of commercial Pt/C catalyst toward glucose electro-oxidation by irreversible Bi adsorption,"
Journal of Energy Challenges and Mechanics, vol. 27, no. 5, s. 1446-1452, 2018.
[23]
N. Lindahl et al.,
"Fuel Cell Measurements with Cathode Catalysts of Sputtered Pt3Y Thin Films,"
ChemSusChem, vol. 11, no. 9, s. 1438-1445, 2018.
[24]
A. Carlson et al.,
"Electrode parameters and operating conditions influencing the performance of anion exchange membrane fuel cells,"
Electrochimica Acta, vol. 277, s. 151-160, 2018.
2017
[1]
J. Lindberg et al.,
"Benchmarking of electrolyte mass transport in next generation lithium batteries,"
Journal of Electrochemical Science and Engineering, vol. 7, no. 4, s. 213-221, 2017.
[2]
S. Sandin et al.,
"Deposition efficiency in the preparation of ozone-producing nickel and antimony doped tin oxide anodes,"
Journal of Electrochemical Science and Engineering, vol. 7, no. 1, s. 51-64, 2017.
[3]
J. Bareno et al.,
"Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes,"
The Journal of Physical Chemistry C, vol. 121, no. 38, s. 20640-20649, 2017.
[4]
B. Endrodi et al.,
"A review of chromium(VI) use in chlorate electrolysis : Functions, challenges and suggested alternatives,"
Electrochimica Acta, vol. 234, s. 108-122, 2017.
[5]
H. Lu et al.,
"Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries,"
Nano Energy, vol. 39, s. 140-150, 2017.
[6]
H. Lu et al.,
"Effects of Different Manufacturing Processes on TEMPO-Oxidized Carboxylated Cellulose Nanofiber Performance as Binder for Flexible Lithium-Ion Batteries,"
ACS Applied Materials and Interfaces, vol. 9, no. 43, s. 37712-37720, 2017.
[7]
J. Lindberg et al.,
"The effect of O2 concentration on the reaction mechanism in Li-O2 batteries,"
Journal of Electroanalytical Chemistry, vol. 797, s. 1-7, 2017.
[8]
L. Hu et al.,
"A Model for Analysis of the Porous Nickel Electrode Polarization in the Molten Carbonate Electrolysis Cell,"
Journal of the Electrochemical Society, vol. 164, no. 8, s. H5197-H5201, 2017.
[9]
M. Fatima et al.,
"A review on biocatalytic decomposition of azo dyes and electrons recovery,"
Journal of Molecular Liquids, vol. 246, s. 275-281, 2017.
[10]
M. Abbasi,
"Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal,"
Journal of Cleaner Production, vol. 145, s. 105-113, 2017.
[11]
A. S. Mussa et al.,
"Fast-charging to a partial state of charge in lithium-ion batteries : A comparative ageing study,"
Journal of Energy Storage, vol. 13, s. 325-333, 2017.
[12]
M. Darab et al.,
"The Influence of Catalyst Layer Thickness on the Performance and Degradation of PEM Fuel Cell Cathodes with Constant Catalyst Loading,"
Electrochimica Acta, vol. 232, s. 505-516, 2017.
[13]
H. Rashtchi et al.,
"Performance of a PEM fuel cell using electroplated Ni–Mo and Ni–Mo–P stainless steel bipolar plates,"
Journal of the Electrochemical Society, vol. 164, no. 13, s. F1427-F1436, 2017.
2016
[1]
R. K. B. Karlsson, A. Cornell och L. G. M. Pettersson,
"Structural Changes in RuO2 during Electrochemical Hydrogen Evolution,"
The Journal of Physical Chemistry C, vol. 120, no. 13, s. 7094-7102, 2016.
[2]
S. Sevencan et al.,
"Economic feasibility study of a fuel cell-based combined cooling, heating and power system for a data centre,"
Energy and Buildings, vol. 111, s. 218-223, 2016.
[3]
R. K. B. Karlsson och A. Cornell,
"Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes,"
Chemical Reviews, vol. 116, no. 5, s. 2982-3028, 2016.
[4]
H. Lu et al.,
"Flexible Paper Electrodes for Li-Ion Batteries Using Low Amount of TEMPO-Oxidized Cellulose Nanofibrils as Binder,"
ACS Applied Materials and Interfaces, vol. 8, no. 28, s. 18097-18106, 2016.
[5]
L. Hu, G. Lindbergh och C. Lagergren,
"Performance and Durability of the Molten Carbonate Electrolysis Cell and the Reversible Molten Carbonate Fuel Cell,"
The Journal of Physical Chemistry C, vol. 120, no. 25, s. 13427-13433, 2016.
[6]
J. Hagberg, S. Leijonmarck och G. Lindbergh,
"High Precision Coulometry of Commercial PAN-Based Carbon Fibers as Electrodes in Structural Batteries,"
Journal of the Electrochemical Society, vol. 163, no. 8, s. A1790-A1797, 2016.
[7]
L. Hu, G. Lindbergh och C. Lagergren,
"Operating the nickel electrode with hydrogen-lean gases in the molten carbonate electrolysis cell (MCEC),"
International journal of hydrogen energy, vol. 41, no. 41, s. 18692-18698, 2016.
[8]
H. Rashtchi et al.,
"Evaluation of Ni-Mo and Ni-Mo-P Electroplated Coatings on Stainless Steel for PEM Fuel Cells Bipolar Plates,"
Fuel Cells, vol. 16, no. 6, s. 784-800, 2016.
[9]
M. Cassir, C. Lagergren och A. Basile,
"Strategic views on molten carbonates : An introduction to the special issue section on the "2015 International Workshop on Molten Carbonates & Related Topics (IWMC2015), 11-13 June, 2015, Shenyang, China","
International journal of hydrogen energy, vol. 41, no. 41, s. 18687-18691, 2016.
[10]
H. Lundgren et al.,
"Thermal Management of Large-Format Prismatic Lithium-Ion Battery in PHEV Application,"
Journal of the Electrochemical Society, vol. 163, no. 2, s. A309-A317, 2016.
[11]
H. Lu et al.,
"Lignin as a Binder Material for Eco-Friendly Li-Ion Batteries,"
Materials, vol. 9, no. 3, 2016.
2015
[1]
H. Lundgren et al.,
"Characterization of the Mass-Transport Phenomena in a Superconcentrated LiTFSI : Acetonitrile Electrolyte,"
Journal of the Electrochemical Society, vol. 162, no. 7, s. A1334-A1340, 2015.
[2]
M. Esmaily et al.,
"The influence of SO2 on the corrosion of Mg and Mg-Al alloys,"
Journal of the Electrochemical Society, vol. 162, no. 6, s. C260-C269, 2015.
[3]
H. Lundgren, M. Behm och G. Lindbergh,
"Electrochemical Characterization and Temperature Dependency of Mass-Transport Properties of LiPF6 in EC:DEC,"
Journal of the Electrochemical Society, vol. 162, no. 3, s. A413-A420, 2015.
[4]
B. Ebin, G. Lindbergh och S. Gurmen,
"Preparation and electrochemical properties of nanocrystalline LiBxMn2-xO4 cathode particles for Li-ion batteries by ultrasonic spray pyrolysis method,"
Journal of Alloys and Compounds, vol. 620, s. 399-406, 2015.
[5]
I. Rexed et al.,
"Molten carbonate fuel cells for CO2 separation and segregation by retrofitting existing plants - An analysis of feasible operating windows and first experimental findings,"
International Journal of Greenhouse Gas Control, vol. 35, s. 120-130, 2015.
[6]
B. Das et al.,
"High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors,"
Advanced Powder Technology, vol. 26, no. 3, s. 783-788, 2015.
[7]
R. K. B. Karlsson, A. Cornell och L. G. M. Pettersson,
"The electrocatalytic properties of doped TiO2,"
Electrochimica Acta, vol. 180, s. 514-527, 2015.
[8]
K. Dermenci et al.,
"Effect of cathode slurry composition on the electrochemical properties of Li-ion batteries,"
ECS Transactions, vol. 66, no. 9, s. 285-293, 2015.
[9]
V. Klass, M. Behm och G. Lindbergh,
"Capturing lithium-ion battery dynamics with support vector machine-based battery model,"
Journal of Power Sources, vol. 298, s. 92-101, 2015.
[10]
L. Hu, G. Lindbergh och C. Lagergren,
"Electrode Kinetics of the Ni Porous Electrode for Hydrogen Production in a Molten Carbonate Electrolysis Cell (MCEC),"
Journal of the Electrochemical Society, vol. 162, no. 9, s. F1020-F1028, 2015.
[11]
L. Hu, G. Lindbergh och C. Lagergren,
"Electrode kinetics of the NiO porous electrode for oxygen production in the molten carbonate electrolysis cell (MCEC),"
Faraday discussions, vol. 182, s. 493-509, 2015.
[12]
P. Svens, M. Behm och G. Lindbergh,
"Lithium-Ion Battery Cell Cycling and Usage Analysis in a Heavy-Duty Truck Field Study,"
Energies, vol. 8, no. 5, s. 4513-4528, 2015.
[13]
M. Klett et al.,
"Uneven Film Formation across Depth of Porous Graphite Electrodes in Cycled Commercial Li-Ion Batteries,"
The Journal of Physical Chemistry C, vol. 119, no. 1, s. 90-100, 2015.
[14]
H. Ekström och G. Lindbergh,
"A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell,"
Journal of the Electrochemical Society, vol. 162, no. 6, s. A1003-A1007, 2015.
[15]
H. K. Gatty et al.,
"An amperometric nitric oxide sensor with fast response and ppb-level concentration detection relevant to asthma monitoring,"
Sensors and actuators. B, Chemical, vol. 209, s. 639-644, 2015.
[16]
E. Jacques et al.,
"Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers,"
ACS Applied Materials and Interfaces, vol. 7, no. 25, s. 13898-13904, 2015.
[17]
G. Tondi et al.,
"Tannin based foams modified to be semi-conductive : Synthesis and characterization,"
Progress in organic coatings, vol. 78, s. 488-493, 2015.
[18]
S. Sandin, R. K. B. Karlsson och A. Cornell,
"Catalyzed and uncatalyzed decomposition of hypochlorite in dilute solutions,"
Industrial & Engineering Chemistry Research, vol. 54, no. 15, s. 3767-3774, 2015.
2014
[1]
H. G. S. Casalongue et al.,
"Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction,"
The Journal of Physical Chemistry C, vol. 118, no. 50, s. 29252-29259, 2014.
[2]
P. B. Samarasingha et al.,
"Development of cathode materials for lithium ion rechargeable batteries based on the system Li(Ni1/3Mn1/3Co(1/3-x)Mx)O-2, (M = Mg, Fe, Al and x=0.00 to 0.33),"
Solid State Ionics, vol. 268, s. 226-230, 2014.
[3]
A. Cornell,
"Chlorate synthesis cells and technology,"
i Encyclopedia of applied electrochemistry, R.F. Savinell, K. Ota, G. Kreysa red., : Springer, 2014, s. 181-187.
[4]
A. Cornell,
"Chlorate cathodes and electrode design,"
i Encyclopedia of applied electrochemistry, R.F. Savinell,K. Ota,G. Kreysa red., : Springer, 2014, s. 175-181.
[5]
R. K. B. Karlsson et al.,
"Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution,"
Electrochimica Acta, vol. 146, s. 733-740, 2014.
[6]
V. Klass, M. Behm och G. Lindbergh,
"A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation,"
Journal of Power Sources, vol. 270, s. 262-272, 2014.
[7]
R. Soares och A. Bessman,
"Li-ion battery and dc-link capacitor technologies – Electric drivetrain applications : A literature study,"
, 2014.
[8]
T. Guan, P. Alvfors och G. Lindbergh,
"Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system,"
Applied Energy, vol. 130, s. 685-691, 2014.
[9]
B. Ebin, S. Gürmen och G. Lindbergh,
"Preparation and electrochemical properties of spinel LiFexCuyMn1.2O4 by ultrasonic spray pyrolysis,"
Ceramics International, vol. 40, no. 1, s. 1019-1027, 2014.
[10]
M. Klett et al.,
"Non-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis,"
Journal of Power Sources, vol. 257, s. 126-137, 2014.
[11]
A. Oyarce et al.,
"Comparing shut-down strategies for proton exchange membrane fuel cells,"
Journal of Power Sources, vol. 254, s. 232-240, 2014.
[12]
K. Ciosek Högström et al.,
"Impact of the flame retardant additive triphenyl phosphate (TPP) on the performance of graphite/LiFePO4 cells in high power applications,"
Journal of Power Sources, vol. 256, s. 430-439, 2014.
[13]
M. Klett et al.,
"Altered electrode degradation with temperature in LiFePO4/mesocarbon microbead graphite cells diagnosed with impedance spectroscopy,"
Electrochimica Acta, vol. 141, s. 173-181, 2014.
[14]
P. Svens et al.,
"Analysis of aging of commercial composite metal oxide - Li 4Ti5O12 battery cells,"
Journal of Power Sources, vol. 270, s. 131-141, 2014.
[15]
I. Rexed, C. Lagergren och G. Lindbergh,
"Effect of sulfur contaminants on MCFC performance,"
International journal of hydrogen energy, vol. 39, no. 23, s. 12242-12250, 2014.
[16]
L. Hu et al.,
"Electrochemical performance of reversible molten carbonate fuel cells,"
International journal of hydrogen energy, vol. 39, no. 23, s. 12323-12329, 2014.
[17]
M. Willgert et al.,
"Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications,"
Journal of Materials Chemistry A, vol. 2, no. 33, s. 13556-13564, 2014.
[18]
E. Jacques et al.,
"The effect of lithium-intercalation on the mechanical properties of carbon fibres,"
Carbon, vol. 68, s. 725-733, 2014.
[19]
A. Oyarce et al.,
"Direct sorbitol proton exchange membrane fuel cell using moderate catalyst loadings,"
Electrochimica Acta, vol. 116, s. 379-387, 2014.
[20]
B. I. Hassel et al.,
"A Study on the Morphology, Mechanical, and Electrical Performance of Polyaniline-modified Wood - A Semiconducting Composite Material,"
BioResources, vol. 9, no. 3, s. 5007-5023, 2014.
2013
[1]
S. Bebelis et al.,
"Highlights during the development of electrochemical engineering,"
Chemical engineering research & design, vol. 91, no. 10, s. 1998-2020, 2013.
[2]
S. Sevencan och G. A. Ciftcioglu,
"Life cycle assessment of power generation alternatives for a stand-alone mobile house,"
International journal of hydrogen energy, vol. 38, no. 34, s. 14369-14379, 2013.
[3]
C. Hummelgård et al.,
"Physical and electrochemical properties of cobalt doped (Ti,Ru)O-2 electrode coatings,"
Materials Science & Engineering : B. Solid-state Materials for Advanced Technology, vol. 178, no. 20, s. 1515-1522, 2013.
[4]
C. Hummelgard et al.,
"Spin coated titanium-ruthenium oxide thin films,"
Thin Solid Films, vol. 536, s. 74-80, 2013.
[5]
K. Kortsdottir, C. Dominguez Fernandez och R. Wreland Lindström,
"Influence of Hydrogen and Operation Conditions on CO2 Adsorption on Pt and PtRu Catalyst in a PEMFC,"
ECS Electrochemistry Letters, vol. 2, no. 5, s. F41-F43, 2013.
[6]
S. Sevencan et al.,
"Fuel cell based cogeneration : Comparison of electricity production cost for Swedish conditions,"
International journal of hydrogen energy, vol. 38, no. 10, s. 3858-3864, 2013.
[7]
R. Wreland Lindström et al.,
"Performance of Phosphonated Hydrocarbon Ionomer in the Fuel Cell Cathode Catalyst Layer,"
Journal of the Electrochemical Society, vol. 160, no. 3, s. F269-F277, 2013.
[8]
A. Oyarce et al.,
"Operating conditions affecting the contact resistance of bi-polar plates in proton exchange membrane fuel cells,"
Journal of Power Sources, vol. 231, s. 246-255, 2013.
[9]
M. Wesselmark et al.,
"The impact of iridium on the stability of platinum on carbon thin-filmmodel electrodes,"
Electrochimica Acta, vol. 111, s. 152-159, 2013.
[10]
K. Kortsdottir, R. Wreland Lindström och G. Lindbergh,
"The influence of ethene impurities in the gas feed of a PEM fuel cell,"
International journal of hydrogen energy, vol. 38, no. 1, s. 497-509, 2013.
[11]
M. Hellqvist Kjell et al.,
"Electrochemical characterization of lithium intercalation processes of PAN-based carbon fibers in a microelectrode system,"
Journal of the Electrochemical Society, vol. 160, no. 9, s. A1473-A1481, 2013.
[12]
S. Leijonmarck et al.,
"Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose,"
Journal of Materials Chemistry, vol. 1, no. 15, s. 4671-4677, 2013.
[13]
S. Leijonmarck et al.,
"Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries,"
Composites Science And Technology, vol. 89, s. 149-157, 2013.
[14]
S. Leijonmarck et al.,
"Flexible nano-paper-based positive electrodes for Li-ion batteries- Preparation process and properties,"
Nano Energy, vol. 2, no. 5, s. 794-800, 2013.
[15]
T. G. Zavalis et al.,
"Aging in Lithium-Ion Batteries : Experimental and Model Investigation of Harvested LiFePO4 and Mesocarbon Microbead Graphite Electrodes,"
Electrochimica Acta, vol. 110, s. 335-348, 2013.
[16]
M. Hellqvist Kjell et al.,
"Comparing aging of graphite/LiFePO4 cells at 22 degrees C and 55 degrees C - Electrochemical and photoelectron spectroscopy studies,"
Journal of Power Sources, vol. 243, s. 290-298, 2013.
[17]
E. Jacques et al.,
"Expansion of carbon fibres induced by lithium intercalation for structural electrode applications,"
Carbon, vol. 59, s. 246-254, 2013.
[18]
E. Jacques et al.,
"Piezo-electrochemical effect in lithium-intercalated carbon fibres,"
Electrochemistry communications, vol. 35, s. 65-67, 2013.
[19]
M. Willgert et al.,
"New structural lithium battery electrolytes using thiol-ene chemistry,"
Solid State Ionics, vol. 236, s. 22-29, 2013.
[20]
P. Svens et al.,
"Li-Ion Pouch Cells for Vehicle Applications-Studies of Water Transmission and Packing Materials,"
Energies, vol. 6, no. 1, s. 400-410, 2013.
2012
[1]
J. Gustavsson et al.,
"In-situ activated hydrogen evolution by molybdate addition to neutral and alkaline electrolytes,"
Journal of Electrochemical Science and Engineering, vol. 2, no. 3, s. 105-120, 2012.
[2]
A. Alexiadis et al.,
"Transition to pseudo-turbulence in a narrow gas-evolving channel,"
Theoretical and Computational Fluid Dynamics, vol. 26, no. 6, s. 551-564, 2012.
[3]
V. Klass, M. Behm och G. Lindbergh,
"Evaluating Real-Life Performance of Lithium-Ion Battery Packs in Electric Vehicles,"
Journal of the Electrochemical Society, vol. 159, no. 11, s. A1856-A1860, 2012.
[4]
N. Holmström, K. Wiezell och G. Lindbergh,
"Studying Low-Humidity Effects in PEFCs Using EIS I : Experimental,"
Journal of the Electrochemical Society, vol. 159, no. 8, s. F369-F378, 2012.
[5]
Y. Huang et al.,
"An Air-Stable Fe3S4 Complex with Properties Similar to Those of the HOXair State of the Diiron Hydrogenases,"
European Journal of Inorganic Chemistry, no. 27, s. 4259-4263, 2012.
[6]
K. Wiezell, N. Holmström och G. Lindbergh,
"Studying Low-Humidity Effects in PEFCs Using EIS II : Modeling,"
Journal of the Electrochemical Society, vol. 159, no. 8, s. F379-F392, 2012.
[7]
A. Alexiadis et al.,
"On the stability of the flow in multi-channel electrochemical systems,"
Journal of Applied Electrochemistry, vol. 42, no. 9, s. 679-687, 2012.
[8]
B. Ebin, S. Gürmen och G. Lindbergh,
"Electrochemical properties of nanocrystalline LiCu xMn 2-xO 4 (x = 0.2-0.6) particles prepared by ultrasonic spray pyrolysis method,"
Materials Chemistry and Physics, vol. 136, no. 2-3, s. 424-430, 2012.
[9]
B. Ebin et al.,
"Electrochemical properties of nanocrystalline LiFe xMn 2-xO 4 (x = 0.2-1.0) cathode particles prepared by ultrasonic spray pyrolysis method,"
Electrochimica Acta, vol. 76, s. 368-374, 2012.
[10]
A. Alexiadis et al.,
"The flow pattern in single and multiple submerged channels with gas evolution at the electrodes,"
International Journal of Chemical Engineering, vol. 2012, s. 392613, 2012.
[11]
A. Alexiadis, A. Cornell och M. P. Dudukovic,
"Comparison between CFD calculations of the flow in a rotating disk cell and the Cochran/Levich equations,"
Journal of Electroanalytical Chemistry, vol. 669, s. 55-66, 2012.
[12]
J. Gustavsson, G. Lindbergh och A. Cornell,
"In-situ activation of hydrogen evolution in pH-neutral electrolytes by additions of multivalent cations,"
International journal of hydrogen energy, vol. 37, no. 12, s. 9496-9503, 2012.
[13]
M. Benamira et al.,
"Gadolinia-doped ceria mixed with alkali carbonates for SOFC applications : II - An electrochemical insight,"
International journal of hydrogen energy, vol. 37, no. 24, s. 19371-19379, 2012.
[14]
T. G. Zavalis, M. Behm och G. Lindbergh,
"Investigation of Short-Circuit Scenarios in a Lithium-Ion Battery Cell,"
Journal of the Electrochemical Society, vol. 159, no. 6, s. A848-A859, 2012.
[15]
S. Leijonmarck et al.,
"Electrolytically assisted debonding of adhesives : An experimental investigation,"
International Journal of Adhesion and Adhesives, vol. 32, s. 39-45, 2012.
[16]
M. Willgert, M. Hellqvist Kjel och M. Johansson,
"Thiol-ene systems in lithium ion conducting thermoset electrolytes,"
Abstracts of Papers of the American Chemical Society, vol. 243, 2012.
[17]
E. Jacques et al.,
"Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries,"
Composites Science And Technology, vol. 72, no. 7, s. 792-798, 2012.
[18]
M. Willgert, M. H. Kjell och M. Johansson,
"Effect of Lithium Salt Content on the Performance of Thermoset Lithium Battery Electrolytes,"
American Chemical Society Symposium Series (ACS), s. 55-65, 2012.
[19]
J. B. Parsa, M. Abbasi och A. Cornell,
"Improvement of the Current Efficiency of the Ti/Sn-Sb-Ni Oxide Electrode via Carbon Nanotubes for Ozone Generation,"
Journal of the Electrochemical Society, vol. 159, no. 5, s. D265-D269, 2012.
[20]
M. Klett et al.,
"Quantifying mass transport during polarization in a Li Ion battery electrolyte by in situ 7Li NMR imaging,"
Journal of the American Chemical Society, vol. 134, no. 36, s. 14654-14657, 2012.
2011
[1]
S. Sevencan, G. A. Altun-Ciftcioglu och M. A. N. Kadirgan,
"A Preliminary Feasibility Study of a Fuel Cell Based Combined Cooling Heating and Power System,"
Gazi University Journal of Polytechnic, vol. 14, no. 3, s. 199-202, 2011.
[2]
S. Sevencan, G. Altun Çiftçioǧlu och N. Kadirgan,
"A preliminary environmental assessment of power generation systems for a stand-alone mobile house with cradle to gate approach,"
Gazi University Journal of Science, vol. 24, no. 3, s. 487-494, 2011.
[3]
R. Wreland Lindström och G. Lindbergh,
"Teknikbevakning av polymera bränsleceller (PEFC),"
, Elforsk rapport, 11:37, 2011.
[4]
R. Wreland Lindström,
"Bränsleceller och material : Rapport från arbetsseminarium 16 juni 2011,"
, Elforsk rapport, 11:46, 2011.
[5]
E. Yli-Rantala et al.,
"Graphitised Carbon Nanofibres as Catalyst Support for PEMFC,"
Fuel Cells, vol. 11, no. 6, s. 715-725, 2011.
[6]
J. Degerman Engfeldt et al.,
"Methodology for measuring current distribution effects in electrochromic smart windows,"
Applied Optics, vol. 50, no. 29, s. 5639-5646, 2011.
[7]
A. Alexiadis et al.,
"Liquid-gas flow patterns in a narrow electrochemical channel,"
Chemical Engineering Science, vol. 66, no. 10, s. 2252-2260, 2011.
[8]
M. D. Karkas et al.,
"Light-Induced Water Oxidation by a Ru complex Containing a Bio-Inspired Ligand,"
Chemistry - A European Journal, vol. 17, no. 28, s. 7953-7959, 2011.
[9]
A. Alexiadis et al.,
"On the electrode boundary conditions in the simulation of two phase flow in electrochemical cells,"
International journal of hydrogen energy, vol. 36, no. 14, s. 8557-8559, 2011.
[10]
M. Benamira et al.,
"Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications : I. A thermal, structural and morphological insight,"
Journal of Power Sources, vol. 196, no. 13, s. 5546-5554, 2011.
[11]
B. Wickman et al.,
"Tungsten oxide in polymer electrolyte fuel cell : A thin-film model electrode study,"
Electrochimica Acta, vol. 56, no. 25, s. 9496-9503, 2011.
[12]
P. Svens et al.,
"Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications,"
Energies, vol. 4, no. 5, s. 741-757, 2011.
[13]
S. Leijonmarck et al.,
"Electrochemical characterization of electrically induced adhesive debonding,"
Journal of the Electrochemical Society, vol. 158, no. 10, s. P109-P114, 2011.
[14]
M. Willgert et al.,
"Photoinduced free radical polymerization of thermoset lithium battery electrolytes,"
European Polymer Journal, vol. 47, no. 12, s. 2372-2378, 2011.
[15]
M. Willgert et al.,
"Photoinduced polymerization of structural lithium-ion battery electrolytes,"
Abstracts of Papers of the American Chemical Society, vol. 241, 2011.
[16]
M. Hellqvist Kjell et al.,
"PAN-based carbon fiber negative electrodes for structural lithium-ion batteries,"
Journal of the Electrochemical Society, vol. 158, no. 12, s. A1455-A1460, 2011.
[17]
A. Nyman, M. Behm och G. Lindbergh,
"A Theoretical and Experimental Study of the Mass Transport in Gel Electrolytes : I. Mathematical Analysis of Characterization Method,"
Journal of the Electrochemical Society, vol. 158, no. 6, s. A628-A635, 2011.
[18]
A. Nyman, M. Behm och N. G. Lindbergh,
"A Theoretical and Experimental Study of the Mass Transport in Gel Electrolytes : II. Experimental Characterization of LiPF6-EC-PC-P(VdF-HFP),"
Journal of the Electrochemical Society, vol. 158, no. 6, s. A636-A643, 2011.
2010
[1]
R. J. Behm et al.,
"Electrocatalytic Function of Nanostructured Surfaces – Reaction and Mass Transport,"
i Nanotechnology : Fundamentals and Applications of Functional Nanostructures, T. Schimmel, H. v. Löhneysen, M Barczewski, Eds red., Stuttgart : Baden-Württemberg Stiftnung, 2010, s. 281-303.
[2]
K. Kortsdottir et al.,
"Influence of toluene contamination at the hydrogen Pt/C anode in a proton exchange membrane fuel cell,"
Electrochimica Acta, vol. 55, no. 26, s. 7643-7651, 2010.
[3]
J. Gustavsson, L. Nylen och A. Cornell,
"Rare earth metal salts as potential alternatives to Cr(VI) in the chlorate process,"
Journal of Applied Electrochemistry, vol. 40, no. 8, s. 1529-1536, 2010.
[4]
Y. E. Seidel et al.,
"Oscillatory behaviour in Galvanostatic Formaldehyde Oxidation on Nanostructured Pt/Glassy Carbon Model Electrodes,"
ChemPhysChem, vol. 11, no. 7, s. 1405-1415, 2010.
[5]
C. Malmgren et al.,
"Nanocrystallinity in RuO2 coatings-Influence of precursor and preparation temperature,"
Thin Solid Films, vol. 518, no. 14, s. 3615-3618, 2010.
[6]
R. Wreland Lindström et al.,
"Active Area Determination of Porous Pt Electrodes Used in Polymer Electrolyte Fuel Cells : Temperature and Humidity Effects,"
Journal of the Electrochemical Society, vol. 157, no. 12, s. B1795-B1801, 2010.
[7]
M. Wesselmark et al.,
"Hydrogen oxidation reaction on thin platinum electrodes in the polymer electrolyte fuel cell,"
Electrochemistry communications, vol. 12, no. 11, s. 1585-1588, 2010.
[8]
M. Wesselmark et al.,
"Electrochemical performance and stability of thin film electrodes with metal oxides in polymer electrolyte fuel cells,"
Electrochimica Acta, vol. 55, no. 26, s. 7590-7596, 2010.
[9]
F. Hallberg et al.,
"Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy,"
Electrochimica Acta, vol. 55, no. 10, s. 3542-3549, 2010.
[10]
W. Gao et al.,
"Attachment of a Hydrogen-Bonding Carboxylate Side Chain to an FeFe -Hydrogenase Model Complex : Influence on the Catalytic Mechanism,"
Chemistry - A European Journal, vol. 16, no. 8, s. 2537-2546, 2010.
[11]
A. Nyman et al.,
"Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations,"
Journal of the Electrochemical Society, vol. 157, no. 11, s. A1236-A1246, 2010.
2008-2009
[1]
A. Oyarce et al.,
"In-situ Measurements of Contact Resistance and In-situ Durability studies of Steels and Coatings to be used as Bipolar Plates in PEMFCs,"
ECS Transactions, vol. 25, no. 1, s. 1791-1801, 2009.
[2]
R. Wreland Lindström, L. Hildebrandt och G. Lindbergh,
"Polymera bränsleceller (PEMFC) : Teknikbevakningsrapport 2009,"
, Elforsk rapport, 10:57, 2009.
[3]
C. Lagergren och G. Lindbergh,
"Teknikbevakning av stationära smältkarbonatbränsleceller (MCFC) 2008,"
Elforsk, Elforsk rapport, 09:45, 2009.
[4]
Y. Xu et al.,
"A New Dinuclear Ruthenium Complex as an Efficient Water Oxidation Catalyst,"
Inorganic Chemistry, vol. 48, no. 7, s. 2717-2719, 2009.
[5]
Y. Gao et al.,
"Nucleophilic Attack of Hydroxide on a Mn-V Oxo Complex : A Model of the O-O Bond Formation in the Oxygen Evolving Complex of Photosystem II,"
Journal of the American Chemical Society, vol. 131, no. 25, s. 8726-+, 2009.
[6]
L. Nylén och A. M. Cornell,
"Effects of electrolyte parameters on the iron/steel cathode potential in the chlorate process,"
Journal of Applied Electrochemistry, vol. 39, no. 1, s. 71-81, 2009.
[7]
K. Ciosek et al.,
"Energy storage activities in the Swedish hybrid vehicle centre,"
World Electric Vehicle Journal, vol. 3, no. 1, 2009.
[8]
G. Lindbergh och R. Wreland Lindström,
"Teknikbevakning av polymera bränsleceller (PEMFC) 2008,"
, Elforsk rapport, 09:44, 2008.
[9]
C. Malmgren et al.,
"Nanoscale characterization of crystallinity in DSA (R) coating,"
Journal of Physics, Conference Series, vol. 100, no. Part 5, s. 052026, 2008.
[10]
M. Wesselmark, C. Lagergren och G. Lindbergh,
"Methanol and formic acid oxidation in zinc electrowinning under process conditions,"
Journal of Applied Electrochemistry, vol. 38, no. 1, s. 17-24, 2008.
[11]
P. Samarasingha et al.,
"LiNi1/3Mn1/3Co1/3O2 synthesized by the Pechini method for the positive electrode in Li-ion batteries : Material characteristics and electrochemical behaviour,"
Electrochimica Acta, vol. 53, no. 27, s. 7995-8000, 2008.
[12]
A. Nyman, M. Behm och G. Lindbergh,
"Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6-EC-EMC electrolyte,"
Electrochimica Acta, vol. 53, no. 22, s. 6356-6365, 2008.
[13]
S. Randström et al.,
"Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide,"
Electrochimica Acta, vol. 53, no. 22, s. 6397-6401, 2008.
[14]
S. von Kraemer et al.,
"Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell,"
Journal of Power Sources, vol. 180, no. 1, s. 185-190, 2008.
[15]
N. Ipek, M. Vynnycky och A. M. Cornell,
"A coupled electrochemical and hydrodynamical two-phase model for the electrolytic pickling of steel,"
Journal of the Electrochemical Society, vol. 155, no. 4, s. P33-P43, 2008.
[16]
S. von Kraemer et al.,
"Substitution of Nafion with Sulfonated Polysulfone in Membrane-Electrode Assembly Components for 60-120 °C PEMFC Operation,"
Journal of the Electrochemical Society, vol. 155, no. 10, s. B1001-B1007, 2008.
[17]
S. von Kraemer et al.,
"Pore Size Distribution and Water Uptake in Hydrocarbon and Perfluorinated Proton-Exchange Membranes as Studied by NMR Cryoporometry,"
Fuel Cells, vol. 8, no. 3-4, s. 262-269, 2008.
[18]
L. Nylén, J. Gustavsson och A. M. Cornell,
"Cathodic reactions on an iron RDE in the presence of Y(III),"
Journal of the Electrochemical Society, vol. 155, no. 10, s. E136-E142, 2008.
2006-2007
[1]
J. Berendson,
"Electrochemical methods,"
i Surface Characterization : A User's Sourcebook, : Wiley-Blackwell, 2007, s. 590-606.
[2]
H. Ekstrom et al.,
"Evaluation of a sulfophenylated polysulfone membrane in a fuel cell at 60 to 110 degrees C,"
Solid State Ionics, vol. 178, no. 13-14, s. 959-966, 2007.
[3]
T. Vernersson och G. Lindbergh,
"A model for mass transport in the electrolyte membrane of a DMFC,"
Journal of Applied Electrochemistry, vol. 37, no. 4, s. 429-438, 2007.
[4]
J. Wulff och A. M. Cornell,
"Cathodic current efficiency in the chlorate process,"
Journal of Applied Electrochemistry, vol. 37, no. 1, s. 181-186, 2007.
[5]
N. Ipek, A. M. Cornell och M. Vynnycky,
"A mathematical model for the electrochemical pickling of steel,"
Journal of the Electrochemical Society, vol. 154, no. 10, s. P108-P119, 2007.
[6]
N. Holmström et al.,
"The influence of the gas diffusion layer on water management in polymer electrolyte fuel cells,"
Fuel Cells, vol. 7, no. 4, s. 306-313, 2007.
[7]
H. Ekström et al.,
"Nanometer-thick films of titanium oxide acting as electrolyte in the polymer electrolyte fuel cell,"
Electrochimica Acta, vol. 52, no. 12, s. 4239-4245, 2007.
[8]
M. Gustavsson et al.,
"Thin film Pt/TiO2 catalysts for the polymer electrolyte fuel cell,"
Journal of Power Sources, vol. 163, no. 2, s. 671-678, 2007.
[9]
P. Kjellin et al.,
"On the activity and stability of Sr3NiPtO6 and Sr3CuPtO6 as electrocatalysts for the oxygen reduction reaction in a polymer electrolyte fuel cell,"
Journal of Power Sources, vol. 168, no. 2, s. 346-350, 2007.
[10]
K. Wikander et al.,
"On the influence of Pt particle size on PEMFC cathode performance,"
Electrochimica Acta, vol. 52, no. 24, s. 6848-6855, 2007.
[11]
S. Randström, C. Lagergren och S. Scaccia,
"Investigation of a Ni(Mg,Fe)O Cathode for Molten Carbonate Fuel Cell Applications,"
Fuel Cells, vol. 7, no. 3, s. 218-224, 2007.
[12]
S. Randström et al.,
"The influence of air and its components on the cathodic stability of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide,"
Electrochimica Acta, vol. 53, no. 4, s. 1837-1842, 2007.
[13]
L. Nylén et al.,
"Investigation of the oxygen evolving electrode in pH-neutral electrolytes : Modelling and experiments of the RDE-cell,"
Electrochimica Acta, vol. 52, no. 13, s. 4513-4524, 2007.
[14]
S. von Kraemer et al.,
"Erratum: Gas Diffusion Electrodes and Membrane Electrode Assemblies Based on a Sulfonated Polysulfone for High-Temperature PEMFC [J. Electrochem. Soc., 153, A2077 (2006)],"
Journal of the Electrochemical Society, vol. 153, no. 12, s. L35-L35, 2006.
[15]
L. van Wuellen et al.,
"NMR studies of cation transport in the crystalline ion conductors MCF3SO3 (M = Li, Na) and Li7TaO6,"
Solid State Ionics, vol. 177, no. 19-25, s. 1665-1672, 2006.
[16]
T. Vernersson et al.,
"A sulfophenylated polysulfone as the DMFC electrolyte membrane - an evaluation of methanol permeability and cell performance,"
Fuel Cells, vol. 6, no. 5, s. 340-346, 2006.
[17]
A. Ringuede et al.,
"Solubility and electrochemical studies of LiFeO2-LiCoO2-NiO materials for the MCFC cathode application,"
Journal of Power Sources, vol. 160, no. 2, s. 789-795, 2006.
[18]
C. Wallmark et al.,
"Integration of the components in a small-scale stationary research PEFC system,"
Journal of Power Sources, vol. 159, no. 1, s. 613-625, 2006.
[19]
D. Pettersson et al.,
"An experimental system for evaluation of well-defined catalysts on nonporous electrodes in realistic DMFC environment,"
Electrochimica Acta, vol. 51, no. 28, s. 6584-6591, 2006.
[20]
R. Dinnebier et al.,
"Crystal structures of the trifluoromethyl sulfonates M(SO3CF3)(2) (M = Mg, Ca, Ba, Zn, Cu) from synchrotron X-ray powder diffraction data,"
Acta Crystallographica Section B : Structural Science, vol. 62, s. 467-473, 2006.
[21]
C. Medard et al.,
"Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions : Activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports,"
Electrochimica Acta, vol. 51, no. 16, s. 3202-3213, 2006.
[22]
L. Hildebrandt, R. Dinnebier och M. Jansen,
"Crystal structure and ionic conductivity of three polymorphic phases of rubidium trifluoromethyl sulfonate, RbSO3CF3,"
Inorganic Chemistry, vol. 45, no. 8, s. 3217-3223, 2006.
[23]
P. Gode et al.,
"A novel sulfonated dendritic polymer as the acidic component in proton conducting membranes,"
Solid State Ionics, vol. 177, no. 7-8, s. 787-794, 2006.
[24]
A. Wijayasinghe, B. Bergman och C. Lagergren,
"LiFeO2-LiCoO2-NiO materials for Molten Carbonate Fuel Cell cathodes. Part II. Fabrication and characterization of porous gas diffusion cathodes,"
Solid State Ionics, vol. 177, no. 1-2, s. 175-184, 2006.
[25]
A. Wijayasinghe, B. Bergman och C. Lagergren,
"LiFeO2-LiCoO2-NiO materials for Molten Carbonate Fuel Cell cathodes. Part I : Powder synthesis and material characterization,"
Solid State Ionics, vol. 177, no. 1-2, s. 165-173, 2006.
[26]
S. von Kraemer et al.,
"Gas Diffusion Electrodes and Membrane Electrode Assemblies Based on a Sulfonated Polysulfone for High-Temperature PEMFC,"
Journal of the Electrochemical Society, vol. 153, no. 11, s. A2077-A2084, 2006.
[27]
L. Nylén och A. M. Cornell,
"Critical Anode Potential in the Chlorate Process,"
Journal of the Electrochemical Society, vol. 153, no. 1, s. D14-D20, 2006.
[28]
H. Ekström et al.,
"A Novel Approach for Measuring Catalytic Activity of Planar Model Catalysts in the Polymer Electrolyte Fuel Cell Environment,"
Journal of the Electrochemical Society, vol. 153, no. 4, s. A724-A730, 2006.
[29]
K. Wikander et al.,
"Alternative catalysts and carbon support material for PEMFC,"
Fuel Cells, vol. 6, no. 1, s. 21-25, 2006.
[30]
S. Randström, C. Lagergren och P. Capobianco,
"Corrosion of anode current collectors in molten carbonate fuel cells,"
Journal of Power Sources, vol. 160, no. 2, s. 782-788, 2006.
2004-2005
[1]
M. Wesselmark, C. Lagergren och G. Lindbergh,
"Methanol oxidation as anode reaction in zinc electrowinning,"
Journal of the Electrochemical Society, vol. 152, no. 11, s. D201-D207, 2005.
[2]
T. D. Dolidze et al.,
"Two-equivalent electrochemical reduction of a cyano-complex Tl-III(CN)(2) (+) and the novel di-nuclear compound (CN)(5)Pt-II-Tl-III (0),"
Electrochimica Acta, vol. 50, no. 22, s. 4444-4450, 2005.
[3]
L. Hildebrandt, R. Dinnebier och M. Jansen,
"Crystal structure and ionic conductivity of cesium trifluoromethyl sulfonate, CSSO3CF3,"
Zeitschrift für Anorganische und Allgemeines Chemie, vol. 631, no. 9, s. 1660-1666, 2005.
[4]
L. van Wullen, L. Hildebrandt och M. Jansen,
"Cation mobility and anion reorientation in lithium trifluoromethane sulfonate, LiCF3SO3,"
Solid State Ionics, vol. 176, no. 15-16, s. 1449-1456, 2005.
[5]
F. Jaouen et al.,
"Adhesive copper films for an air-breathing polymer electrolyte fuel cell,"
Journal of Power Sources, vol. 144, no. 1, s. 113-121, 2005.
[6]
H. Matic et al.,
"In situ micro-Raman on the membrane in a working PEM cell,"
Electrochemical and solid-state letters, vol. 8, no. 1, s. A5-A7, 2005.
[7]
S. Enback och G. Lindbergh,
"Experimentally validated model for CO oxidation on PtRu/C in a porous PEFC electrode,"
Journal of the Electrochemical Society, vol. 152, no. 1, s. A23-A31, 2005.