Svante Linusson: Limit shape of shifted staircase SYT

Tid: Ti 2020-01-28 kl 10.30 - 11.20

Föreläsare: Svante Linusson, KTH Royal Institute of Technology

Plats: Institut Mittag-Leffler, Seminar Hall Kuskvillan

Abstract

A shifted tableau of staircase shape has row lengths \(n,n-1,\ldots,2,1\) adjusted on the right side and numbers increasing along rows and columns. Let the number in a box represent the height of a point above that box, then we have proved that the points for a uniformly chosen random shifted staircase SYT in the limit converge to a certain surface in three dimensions. I will present this result and also how this implies, via properties of the Edelman-Greene bijection, results about random 132-avoiding sorting networks, including limit shapes for trajectories and intermediate permutations.
(Based on joint work with Samu Potka and Robin Sulzgruber.)

Innehållsansvarig:webmaster@math.kth.se
Tillhör: Institutionen för matematik
Senast ändrad: 2020-01-22