Skip to main content

A systems approach to ice loads on concrete dams

Time: Wed 2022-02-09 13.00

Location: F3, Lindstedtsvägen 26 & 28, Stockholm

Video link:

Language: English

Subject area: Civil and Architectural Engineering, Concrete Structures

Doctoral student: Rikard Hellgren , Betongbyggnad

Opponent: Professor Pierre Legér, Polytechnique Montréal

Supervisor: Docent Richard Malm, Betongbyggnad; Professor Anders Ansell, Betongbyggnad; Adjungerad professor Erik Nordström, Betongbyggnad

QC 20220111


Dams are mainly used for the storage of water to electricity production and irrigation, or for river regulation. Continuous work to assure a high dam safety level is a prerequisite to minimize the risk for the uncontrolled release of water. An essential part of the safety evaluation of concrete dams is to understand the loads they are exposed to and the expected response of the dam. Under normal conditions, the behaviour of concrete dams is, to a great extent, governed by the ambient variation in temperature and water level. For concrete dams in cold climates, the large variation in ambient temperatures between summer and winter is particularly significant. In addition, these dams may be subjected to a pressure load from the expansion or movement of an ice sheet on the reservoir. The current guidelines for these ice loads are based on the dam's location and state that concrete dams must be designed for a line load of 50-250 kN/m. Thus, the ice load constitutes a significant part of the total load, especially for small dams. Despite its relatively significant impact, the knowledge about ice loads is insufficient, and the magnitude and return period of ice loads constitute one of the greatest uncertainties during stability evaluations of concrete dams. Furthermore, an apparent contradiction is that measurements and models indicate that ice loads are higher than the recommended values. Simultaneously, there are no reported dam failures where the ice-load has been addressed as the reason for the breach.

To increase the knowledge about ice loads and the structural behaviour of concrete dams, this thesis applies an approach where the ice and the dam are parts of a structural system. The thesis contains six studies investigating the dam's, the ice's or the system's response to external loads.  Studies of the dam are aimed at increasing the understanding of the normal behaviour of concrete dams. Studies of ice loads include measurements, and a major contribution from this project is the development of a 1$\times$3 m$^2$ ice load panel, the installation of the panel on a concrete dam, and subsequent measurements during six winters. In addition, a systematic review and meta-analysis of previous measurements have been performed. The studies of the different parts have been connected through two studies of the entire system. The first is a parameter study where the static interaction between ice and dam is simulated to quantify how geometric variations of the reservoir and ice affect the mechanical ice loads. The second study searches for detectable influence from the ice load in the measured behaviour of concrete dams.

The results show that the structural behaviour of concrete dams under normal conditions is primarily governed by the variation in water level and temperature. For the studied dams, these effects are significantly larger than the influence from damage and degradation. Ice load measurements and simulations show that ice loads varies significantly along the dam. This variation makes it difficult to quantify the impact of external factors on the magnitude of ice loads. Despite this difficulty, three independent analyses show that ice thickness, water level change, and the dam's properties have an evident effect on the magnitude of ice loads. If current guidelines are to be updated to consider local conditions at the dam, these three parameters should be included. Ice loads of the magnitudes measured and specified in the current guidelines should have a notable impact on the behaviour of a dam during normal operation. However, such an impact has not been found in the eight dams studied within this project. This result indicates that the ice loads measured locally do not necessarily represent the global ice load that acts on the entire structure.