Master's programme in Nuclear Energy Engineering

The master’s programme in Nuclear Energy Engineering provides you with outstanding career opportunities as well as with excellent opportunities for doctoral studies all over the world. After graduation you can pursue careers as, for example: nuclear engineer (design and development of nuclear equipment, such as reactor cores, radiation shielding, etc.), consultant or analyst (nuclear reactor safety, operation, computation support), researcher (development of new generation of reactors), manager (leadership roles at power plants and nuclear facilities), etc.

16 October 2018: Application opens
15 January 2019: Application deadline
1 February 2019: Deadline for supporting academic documents (all applicants) and documentation of fee exempt status (if required) or receipt of application fee (if required)
4 April 2019: Notification of selection results

Application open

Application through University Admissions in Sweden.

Non-EU/EEA/Swiss citizens: The tuition fee for the full programme is SEK 310,000
Non-EU/EEA/Swiss citizens are generally required to pay an application fee of SEK 900.

EU/EEA/Swiss citizens: There are no tuition fees for EU/EEA/Swiss citizens
EU/EEA/Swiss citizens are not required to pay an application fee.

Read more about tuition and application fees

Degree awarded: Master of Science
Language of instruction: English
Duration: Two years (120 ECTS credits)
Programme start: Late August
Location: KTH Campus, Stockholm
School: School of Electrical Engineering and Computer Science (at KTH)

For questions regarding programme content and specific entry requirements, feel free to contact the programme.

Programme director: master@sci.kth.se ​​​​​​​​​​​​​​

Nuclear Energy Engineering at KTH

Our programme serves the nuclear engineering-related industry worldwide in its growing need for competent nuclear engineers and researchers. Our programme gives students a strong foundation in nuclear reactor physics and technology, nuclear power safety, sustainable energy transformation technologies, and radiation protection and dosimetry.

In terms of the number of students and courses, our programme is one of the largest nuclear engineering programmes in the world. Our students come from countries all around the world, joining our programme directly, within the EMINE programme, or via dual diploma and double degree agreements with many other universities in Europe and Asia.

Students can choose from a great variety of elective and very unique courses, such as generation IV reactors, small reactors, Monte Carlo methods and simulations in nuclear technology, reactor and power plant simulations, nuclear reactor dynamics and stability, thermal-hydraulics in nuclear energy engineering, radiation damage in materials, leadership for safe nuclear power industry, chemistry and physics of nuclear fuels, elements of the back-end of the nuclear fuel cycle (organized as a summer school), and more.

Many courses are based on modern teaching methods, such as the flipped classroom approach, and utilize computer-supported interactive assignments and examinations, lecture video recording, and dedicated e-books. Our courses also utilize the APROS simulator – an advanced simulation tool for nuclear reactors and power plants.

All lecturing staff are actively involved in research projects in a broad international cooperation. We conduct experiments in the areas of severe accident management, heavy metal coolant technology, nuclear fuel materials, thermal hydraulics, etc.

Our programme cooperates with a number of industrial partners in Sweden and abroad. Students can choose to carry out master degree projects in companies like Westinghouse, Vattenfall, OKG, Forsmark, and other.

Topics Covered

Nuclear reactor physics and technology, radiation protection, safety of nuclear power plants, generation IV reactors, small reactors, energy transformations, materials in nuclear engineering, nuclear fuel cycle, simulations of nuclear reactors and power plants.

Courses

Career

Nuclear power undergoes a continuous development as an important part of carbon-free electricity production. Many reactors are currently under construction worldwide, and a new generation of nuclear reactors is being developed and envisioned to be the answer to the growing need for a safe, economical and sustainable electricity production.

Students of our master’s programme are highly regarded by industry, authorities and research establishments in Sweden, Europe and worldwide. In Sweden, students are enrolled by established companies such as Vattenfall, Westinghouse, Forsmark Kraftgrupp, Ringhals, Radiation Safety Authority (SSM), Swedish Nuclear Fuel and Waste Management (SKB), ÅF, Lloyd's Register, Studsvik, and other.

Our programme also prepares students for a career in research or continued studies towards a doctoral degree. New positions for doctoral students are opened in the nuclear engineering field at KTH every year. Our students have been accepted for in PhD programmes also in other universities in Europe and USA.

After graduation

Nuclear Engineer, Researcher, Analyst, Consultant, Manager.

Students

Find out what students from the programme think about their time at KTH.

Elina Charatsidou, Greece

"The thing that I like the most about KTH is how friendly it is towards international students."

​​​​​​​Meet the students​​​​​​​

Faculty and research

The majority of courses is given by the division of Nuclear Engineering. The research conducted at the division aims at improving performance and safety of existing and future nuclear power plants. Our research focuses on water- and lead-cooled reactors with conventional and advanced fuels.

We apply a variety of computational techniques, including Monte-Carlo methods, computational fluid dynamics, density functional theory and system codes for simulation of transients.

The division also operates a high-pressure, 1 MW heated water loop for two-phase flow studies and dry-out testing, and a nuclear fuel manufacturing laboratory, with equipment for manufacturing and characterisation of uranium nitride, silicide and composite fuels.

The following topical areas are currently being pursued:

  • Thermo-mechanic and thermal-hydraulic modelling of LWRs
  • Heat transfer in super-critical water
  • Development and optimisation of advanced Monte-Carlo methods
  • Nuclear fuel cycle modelling
  • Design and safety analysis of lead-cooled reactors
  • Science of radiation damage in nuclear steels
  • Advanced nuclear fuel development (mixed oxides, nitrides and silicides)
  • Quantitative validation of computational tools for reactor design and safety analyses
  • Development and application of Risk Oriented Accident Analysis Framework (ROAAM+)

Faculty and research​​​​​​​

​​​​​​​Changes in the programme may occur.

Top page top