Skip to main content
To KTH's start page To KTH's start page

Machine Learning for Scientific Discovery, with Examples in Fluid Mechanics

Time: Thu 2024-05-23 10.30 - 11.30

Location: Osquars Backe 5, floor 2

Participating: Prof. Steve Brunton (Univ. Washington)

Export to calendar

Abstract: Accurate and efficient nonlinear dynamical systems models are essential understand, predict, estimate, and control complex natural and engineered systems. In this talk, I will explore how machine learning may be used to develop these models purely from measurement data. We explore the sparse identification of nonlinear dynamics (SINDy) algorithm, which identifies a minimal dynamical system model that balances model complexity with accuracy, avoiding overfitting. This approach tends to promote models that are interpretable and generalizable, capturing the essential “physics” of the system. We also discuss the importance of learning effective coordinate systems in which the dynamics may be expected to be sparse. This sparse modeling approach will be demonstrated on a range of challenging modeling problems, for example in fluid dynamics. Because fluid dynamics is central to transportation, health, and defense systems, we will emphasize the importance of machine learning solutions that are interpretable, explainable, generalizable, and that respect known physics.

Bio: Dr. Steven L. Brunton is a Professor of Mechanical Engineering at the University of Washington. He is also Adjunct Professor of Applied Mathematics, Aeronautics and astronautics, and Computer science, and he is also a Data Science Fellow at the eScience Institute. He is Director of the AI Center for Dynamics and Control (ACDC) at UW and is Associate Director for the NSF AI Institute in Dynamic Systems. Steve received the B.S. in mathematics from Caltech in 2006 and the Ph.D. in mechanical and aerospace engineering from Princeton in 2012. His research combines machine learning with dynamical systems to model and control systems in fluid dynamics, biolocomotion, optics, energy systems, and manufacturing. He received the Army and Air Force Young Investigator Program (YIP) awards and the Presidential Early Career Award for Scientists and Engineers (PECASE). Steve is also passionate about teaching math to engineers as co-author of four textbooks and through his popular YouTube channel, under the moniker “eigensteve”.