Recent Publications

Here you find the recent publications from our department. For more publications, please see the individual researchers information.

Our 50 latest publications

[1]
Samuelsson, L. N., Bäbler, M. U., Brännvall, E. & Moriana, R. (2016). Pyrolysis of kraft pulp and black liquor precipitates derived from spruce : Thermal and kinetic analysis. Fuel processing technology, 149, 275-284.
[2]
Henschen, J., Illergård, J., Larsson, P. A., Ek, M. & Wågberg, L. (2016). Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids and Surfaces B : Biointerfaces, 146, 415-422.
[3]
Chen, C., Illergård, J., Wågberg, L. & Ek, M. (2017). Effect of cationic polyelectrolytes in contact-active antibacterial layer-by-layer functionalization. Holzforschung, 71(7-8), 649-658.
[4]
Arnling Bååth, J., Giummarella, N., Klaubauf, S., Lawoko, M. & Olsson, L. (2016). A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds. FEBS Letters, 590(16), 2611-2618.
[5]
Deshpande, R., Giummarella, N., Henriksson, G., Germgård, U., Sundvall, L., Grundberg, H. & Lawoko, M. (2018). The reactivity of lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp from softwood. Industrial crops and products (Print), 115, 315-322.
[7]
Giummarella, N. & Lawoko, M. (2016). Structural Basis for the Formation and Regulation of Lignin–Xylan Bonds in Birch. ACS Sustainable Chemistry & Engineering, 4(10), 5319-5326.
[8]
Giummarella, N., Zhang, L., Henriksson, G. & Lawoko, M. (2016). Structural features of mildly fractionated lignin carbohydrate complexes (LCC) from spruce. RSC Advances, 6(48), 42120-42131.
[9]
Mattsson, T., Azhar, S., Eriksson, S., Helander, M., Henriksson, G., Jedvert, K. ... Theliander, H. (2017). The Development of a Wood-based Materials-biorefinery. BioResources, 12(4), 9152-9182.
[10]
de Carvalho, D. M., Martinez-Abad, A., Colodette, J. L., Lindström, M., Vilaplana, F. & Sevastyanova, O. (2016). Chemical and structural characterization of xylans from sugarcane bagasse and sugarcane straw. Abstract of Papers of the American Chemical Society, 251.
[11]
Martinez-Abad, A., Berglund, J., Toriz, G., Gatenholm, P., Henriksson, G., Lindström, M. ... Vilaplana, F. (2017). Regular Motifs in Xylan Modulate Molecular Flexibility and Interactions with Cellulose Surfaces. Plant Physiology, 175(4), 1579-1592.
[12]
Moriana, R., Vilaplana, F. & Ek, M. (2016). Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites : A Study from Macro- to Nano-Dimensions. Carbohydrate Polymers, 139, 139-149.
[13]
Geng, X., Zhang, Y., Jiao, L., Yang, L., Hamel, J., Giummarella, N. ... Zhu, H. (2017). Bioinspired Ultrastable Lignin Cathode via Graphene Reconfiguration for Energy Storage. ACS Sustainable Chemistry and Engineering, 5(4), 3553-3561.
[14]
Giummarella, N. (2018). Fundamental Aspects of Lignin Carbohydrate Complexes (LCC) : Mechanisms, Recalcitrance and Material concepts (Doctoral thesis , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2018:18). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227865.
[15]
Giummarella, N., Lindgren, C., Lindström, M. & Henriksson, G. (2016). Lignin Prepared by Ultrafiltration of Black Liquor : Investigation of Solubility, Viscosity, and Ash Content. BioResources, 11(2), 3494-3510.
[16]
Berglund, J. (2018). Wood Hemicelluloses - Fundamental Insights on Biological and Technical Properties (Doctoral thesis , KTH Royal Institute of Technology, Stockholm, Sweden, TRITA-CBH-FOU 2018:63). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240982.
[18]
Ottenhall, A., Henschen, J., Illergård, J. & Ek, M. (2018). Cellulose-based water purification using paper filters modified with polyelectrolyte multilayers to remove bacteria from water through electrostatic interactions. Environmental Science: Water Research & Technology.
[19]
Bengtsson, A. (2019). Carbon fibres from lignin-cellulose precursors (Licentiate thesis , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2019.11). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244756.
[20]
Svärd, A., Sevastyanova, O., Dobele, G., Jurkjane, V. & Brännvall, E. (2016). COST Action FP1105 : effect of raw materials and pulping conditions on the characteristics of dissolved kraft lignins. Holzforschung, 70(12), 1105-1114.
[21]
Zheng, C., Li, D., Ottenhall, A. & Ek, M. (2017). Cellulose fiber based fungal and water resistant insulation materials. International Journal of the Biology, Chemistry, Physics, and Technology of Wood, 71(7-8), 633-639.
[22]
Zheng, C. (2017). Cellulose-fiber-based thermal insulation materials with fungal resistance, improved water resistance and reaction-to-fire properties (Licentiate thesis , KTH Royal Institute of Technology, Stockholm, TRITA-CHE-Report 2017:19). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205608.
[23]
Li, Q., Wang, A., Ding, W. & Zhang, Y. (2017). Influencing Factors for Alkaline Degradation of Cellulose. BioResources, 12(1), 1263-1272.
[24]
Podkościelna, B., Goliszek, M. & Sevastyanova, O. (2017). New approach in the application of lignin for the synthesis of hybrid materials. Pure and Applied Chemistry, 89(1), 161-171.
[25]
Ottenhall, A., Ek, M. & Illergård, J. (2017). Water Purification Using Functionalized Cellulosic Fibers with Nonleaching Bacteria Adsorbing Properties. Environmental Science and Technology, 13, 7616-7623.
[26]
Ottenhall, A. (2017). Water purification using polyelectrolyte modified cellulose fibers and filters to adsorb bacteria (Licentiate thesis , Kungliga Tekniska högskolan, Stockholm, TRITA-CHE-Report 2017:18). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-204511.
[27]
Bi, R., Oinonen, P., Wang, Y. & Henriksson, G. (2016). A Method for Studying Effects on Lignin-Polysaccharide Networks during Biological Degradation and Technical Processes of Wood. BioResources, 11(1), 1307-1318.
[29]
Gordobil, O., Moriana, R., Zhang, L., Labidi, J. & Sevastyanova, O. (2016). Assesment of technical lignins for uses in biofuels and biomaterials : Structure-related properties, proximate analysis and chemical modification. Industrial crops and products (Print), 83, 155-165.
[30]
Oinonen, P., Krawczyk, H., Ek, M., Henriksson, G. & Moriana, R. (2016). Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose : Thermal, mechanical and oxygen barrier properties. Carbohydrate Polymers, 136, 146-153.
[31]
Bi, R., Huang, S. & Henriksson, G. (2016). ISOLATION OF EXCEEDINGLY LOW OXYGEN CONSUMING FUNGAL STRAINS ABLE TO UTILIZE LIGNIN AS CARBON SOURCE. Cellulose Chemistry and Technology, 50(7-8), 811-817.
[32]
Bi, R. (2016). Lignocellulose Degradation by Soil Micro-organisms (Doctoral thesis , KTH Royal Institute of Technology, Stockholm, TRITA-CHE-Report 2016:10). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182336.
[33]
Moraisde Carvalho, D., Sevastyanova, O., Penna, L. S., da Silva, B. P., Lindstrom, M. E. & Colodette, J. L. (2015). Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial crops and products (Print), 73, 118-126.
[34]
Huang, T. (2019). Betulin-modified cellulosic textile fibers with improved water repellency, hydrophobicity and antibacterial properties (Licentiate thesis , KTH Royal Institute of Technology, TRITA-CBH-FOU 2019:14). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243638.
[35]
Huang, T., Chen, C., Li, D. & Ek, M. (2019). Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose. Cellulose (London).
[36]
de Carvalho, D. M., Moser, C., Lindström, M. & Sevastyanova, O. (2019). Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Industrial crops and products (Print), 127, 203-211.
[37]
Giummarella, N., Pu, Y., Ragauskas, A. J. & Lawoko, M. (2018). A Critical Review on the Analysis of Lignin Carbohydrate Bonds. Green Chemistry.
[38]
Ottenhall, A. (2018). Antimicrobial materials from cellulose using environmentally friendly techniques (Doctoral thesis , KTH Royal Institute of Technology, TRITA-CBH-FOU 2018:57). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-238843.
[39]
Moser, C., Henriksson, G. & Lindström, M. (2018). Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol. Nordic Pulp & Paper Research Journal.
[40]
Moser, C. (2018). Manufacturing and Characterization of Cellulose Nanofibers (Doctoral thesis , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2019:1). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240581.
[41]
Tagami, A. (2018). Towards molecular weight-dependent uses of kraft lignin (Licentiate thesis , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 34). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233464.
[42]
Huang, T., Li, D. & Ek, M. (2018). Water repellency improvement of cellulosic textile fibers by betulin and a betulin-based copolymer. Cellulose (London), 25(3), 2115-2128.
[43]
Moser, C., Backlund, H., Louise, D., Gunnar, H. & Mikael E., L. (2018). Xyloglucan adsorption for measuring the specific surface area on various never-dried cellulose nanofibers. Nordic Pulp & Paper Research Journal, 33(2), 186-193.
[44]
Moser, C., Backlund, H., Lindström, M. & Henriksson, G. (2018). Xyloglucan for estimating the surface area of cellulose fibers. Nordic Pulp & Paper Research Journal, 33(2), 194-199.
[45]
Zhao, Y., Moser, C., Lindström, M., Henriksson, G. & Li, J. (2017). Film formation and performance of different nanocelluloses obtained from different cellulose sources after different preparation processes. Abstract of Papers of the American Chemical Society, 253.
[46]
Ottenhall, A., Illergård, J. & Ek, M. (2017). Water Purification Using Functionalized Cellulosic Fibers with Nonleaching Bacteria Adsorbing Properties. Environmental Science and Technology, 51, 7616-7623.
[47]
Ottenhall, A., Seppänen, T. & Ek, M. (2016). Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose (London), 5, 2599-2613.
[48]
Henschen, J., Li, D. & Ek, M. (2019). Preparation of cellulose nanomaterials via cellulose oxalates. Carbohydrate Polymers, 213, 208-216.
[49]
[50]
Zheng, C., Li, D., Ek, M. (2018). Bio-based fire retardant and its application in cellulose-based thermal insulation materials. Presented at 255th American Chemical Society National Meeting.
Page responsible:Chao Zheng
Belongs to: Department of Fibre and Polymer Technology
Last changed: Jun 03, 2017