Skip to main content
To KTH's start page To KTH's start page


Welcome to the home page of the Brummer & Partners MathDataLab. Here you can find information about the research at the Lab.


Pratik Misra  (PhD North Carolina State University, 2021), 2021-present
Orlando Marigliano  (PhD University of Leipzig, 2020), 2020-present
Rene Corbet  (PhD TU Graz, 2020) 2020-present
Guo-Jhen Wu   (PhD, Brown University, 2019), 2019-2021. Joint postdoc between MathDataLab and SeRC Data Science MCP.
Anna Persson   (PhD, Chalmers, 2018), 2018-2021.
Martina Scolamiero , (PhD, KTH, 2016), 2018-2019.

Current projects


  • H. Hult and G.-J. Wu, Almost sure convergence of the accelerated weight histogram algorithm, (2021)
  • P. Dupuis and G.-J. Wu, Analysis and optimization of certain parallel Monte Carlo methods in the low temperature limit, (2020)
  • P. Ljung, A.l Målqvist, A. Persson, A generalized finite element method for the strongly damped wave equation with rapidly varying data, Preprint arXiv:2011.03311, (2020)
  • P. Henning, A. Persson, Computational homogenization of time-harmonic Maxwell's equations, SIAM J. Sci. Comput., 42(3), B581–B607, (2020)
  • C. Görgen, M. Leonelli and O. Marigliano, Staged trees are curved exponential families. ArXiv:2010.15515, (2020)
  • P. Dupuis and G-.J. Wu, Large deviation properties of the empirical measure of a stochastic differential equation with small noise, (2020)
  • W. Chacholski, A. Jin, M. Scolamiero, F. Tombari Homotopical decompositions of simplicial and Vietoris Rips complexes,
  • René Corbet, Ulderico Fugacci, Michael Kerber, Claudia Landi, Bei Wang. A kernel for multi-parameter persistent homology. Computers & Graphics: X. Volume 2 (2019).
  • Corbet, R., Kerber, M. The representation theorem of persistence revisited and generalized. J Appl. and Comput. Topology 2, 1–31 (2018).
  • L. Kanari, P. Dłotko, M. Scolamiero, R. Levi, J. Shillcock, K. Hess, H. Markram, A topological representation of branching neuronal morphologies, Neuroinformatics 16 (1), 3-13, (2018)