1. Introduction


Materials and their properties play a key role in todays society and technology; electronic devices and machines, catalytic reformation of chemicals, corrosion inhibition and protection, energy conversion, nanotechnology, construction materials. In many of those areas surface or interface effects are more or less important. In particular in nanotechnology it is often only the surface that is left.


Course content

The course will through a selected set of examples introduce and motivate a need for a detailed physical and chemical description of surfaces on the atomic/molecular level. This includes basic surface phenomena such as adsorption, desorption, chemical bonds and chemical reactions, thin film growth and their dependence on atomic and electronic surface structure, temperature, pressure and environment.

A set of experimental surface/interface preparation and analysis methods for determination of electronic and atomic structure will be presented and described, with the aim to provide the student with a “tool-box”. This box includes advanced electron and X-ray spectroscopy, electron spectroscopy, surface diffraction, synchrotron radiation and atomically resolved microscopy.

Feedback News