Till KTH:s startsida Till KTH:s startsida

Fiberoptisk kommunikation

Logga in till din kurswebb

Du är inte inloggad på KTH så innehållet är inte anpassat efter dina val.

The high ways of the IT society are the optical fibers. An optical fiber can transport several tens of terabit per second over hundreds of kilometers. Fiber-optic communication is an established technique but is simultaneously in rapid technical development towards higher bit-rates and more complex networks. The course will give you the knowledge in order to understand both the fundamentals and the rapid development, that you as professional engineer can use the fiber optics efficiently. The course treats important devices as optical fibers, laser diodes, optical detectors, and receivers from physical and transmission system point of view. You will also learn how to optimise optical communication links and calculate the bit error rate. The PhD course IO3656 follows the undergraduate course IO2653 but includes also a project assignment where the student will design and simulate a fiber-optic system. The language is english.

Information for research students about course offerings

The course is given annually if there at least five undergraduate or graduate students have registered in advance for courses IO2653 and/or IO3656

Learning outcomes

Knowledge of fiber-optical components and systems with applications to communications. Parameters of devices that are relevant for the system performance are derived from physical descriptions, and form the input parameters for the design of fiber-optic links.
After a completed course, the participants should be able to:
- understand, describe, analyse, and compare the most important devices: optical transmitters, optical fibers, and optical detectors
- design digital fiber-optic links.
- simulate a multilevel coherent fiber-optic communication system using computer software (IO3656 only)

Course main content

Dielectric waveguides: Attenuation, wavelength dispersion, modes, fields.
Light sources and optical amplifiers: Semiconductor laser, light-emitting diode, rate equations, output power, modulation response, chirp, noise, optical amplifiers.
Detectors: PIN-diode, avalanche diode, responsivity, bandwidth, noise.
Transmission systems: Optical links, direct detection systems, soliton systems, coherent systems, multilevel signaling, dispersion limitations, attenuation limitations, additive noise, signal dependent noise, bit error rate, optical networks, simulation and design

Disposition

The course is given in a traditional way, i.e. with lectures (28h) followed by corresponding exercises (16h). There are also two laboratory works (2*4h) and one project assignment. The PhD course follows the undergraduate course IO2653 but includes also a project assignment where the student will design and simulate a fiber-optic system. The language is English.

Eligibility

IO2653 Undergraduate student (IO3656 PhD student)

Recommended prerequisites

It is anticipated that the students are acquainted with:
- Waveguides: Wave equation and the concept of modes. 
- Solid-state electronics: p-n-junction
- Circuit theory: Impulse response, convolution, transfer function of linear systems.
- Signal theory: Auto correlation function, power spectral density

Literature

Fibre-Optic Communication Systems by Govind Agrawal, 4th edition, Wiley
Additional course material is possible to download from course webpage

Although 4th edition of the course book is recommended, also third edition of the book is possible to use

Required equipment

Calculator and access to a computer for the project assignment

Examination

    The written examination is graded A-F. For PhD course IO3656 at least a grade C is necessary in this to get a passing grade on the exam. Calculator, mathematic handbook, the course book and the lecture notes (but NOT exercise notes) are allowed and recommended aids.

    Requirements for final grade

    To pass the entire course, a passing grade is needed on the examination and a passing grade on the laborations. For IO3656 also a passing grade in the project assignment is necessary

    Offered by

    ICT/Material Physics

    Contact

    Richard Schatz (rschatz@kth.se)

    Examiner

    IO2653 Urban Westergren, IO3656 Sergei Popov

    Lärare