Kvantmekanik, fortsättningskurs

Innehåll visas utifrån dina val

Om du inte hittar någon sida, schemahändelse eller nyhet på din kurswebb kan det bero på att du inte ser den kursomgången/gruppen inom kursen som innehållet tillhör.

Veta mer om din kurswebb

Din kurswebb är sidorna för en kurs du prenumererar på. Du väljer sedan vilka omgångar/grupper inom kursen du vill ha information från. Är du registrerad på en kursomgång sköts prenumeration och val av kursomgäng automatiskt åt dig. Vill du ändra något av detta gör du det under Mina inställningar.

När du är inloggad på din kurswebb ser du:
  • Kursöversikt, nyheter och schema med information som är filtrerat utifrån dina valda omgångar/grupper inom kursen
  • Allmänna sidor för hela kursen
  • Kurswikin som är sidor som alla, lärare och studenter, kan skapa och redigera
  • Sidor som hör till de omgångar/grupper inom kursen du valt eller som valts för dig

Logga in till din kurswebb

Du är inte inloggad på KTH så innehållet är inte anpassat efter dina val.

General Information

  • First lecture 2017: Monday Aug 28, 8.15-10, in FB54. Welcome!
  • Credits: 7.5 ECTS points.
  • Course format: The course consists of 15 lectures (30 h) and 15 tutorials (30 h).
  • Examination: Friday October 20, 8.00-13.00.
  • Course book for 2017:
    Quantum Mechanics: A Modern Development, L. E. Ballentine, World Scientific 2nd edition (2014).


  • To master the notation and formalism of QM
  • Ability to formulate and apply the basic rules of QM
  • Ability to formulate and solve the QM problems treated in the course
  • To develop ability to analyze complex problems


Quantum mechanics gives an accurate description of microscopic phenomena, that both overcomes the limited applicability of classical mechanics, and also clarifies when the classical approximation applies. Quantum mechanics gives a basic microscopic description of how nature works, and formulates fundamental rules for describing the outcome of experiments. Quantum effects are of basic importance for various technological applications. The course gives a deepened understanding of the formalism and computational tools of QM. Topics such as Dirac notation, quantum spin systems, path integrals, various approximation methods, field quantization, etc., are treated. The course also contains various important applications of QM. An integral part of the course is to learn about and practice on various problems that can be solved with QM, and we will also discuss some outstanding unsolved problems. The course bridges the gap from introductory quantum physics courses to graduate level courses and to modern applications of QM. The course should be valuable for advanced undergraduate and masters students and beginning PhD students in physics and related areas.


Introductory quantum mechanics and classical mechanics is assumed. For example Gasiorowicz chapter 1-14, Griffiths chapter 1-5, or equivalent.

Course literature

Quantum Mechanics: A Modern Development,
L. E. Ballentine, World Scientific 2nd edition (2014).
ISBN: 9789814578585

Reference literature

Basic quantum mechanics: (This should all be known.)

Introduction to Quantum Mechanics, D. Griffiths, Benjamin Cummings; 2nd edition (April 10, 2004).

Quantum Physics, Stephen Gasiorowicz, 3rd edition, Wiley 2003.

Excellent intermediate book:

Quantum MechanicsJean-Louis Basdevant, Jean Dalibard, Springer Berlin Heidelberg (2005).

Intermediate level: (Used to be the course book)

Modern Quantum Mechanics, J. J. Sakurai, Jim Napolitano 2nd edition, Addison-Wesley (Pearson), (2007).
ISBN 0321503368, 9780321503367
Principles of Quantum Mechanics, R. Shankar, Publisher: Plenum US; 2nd edition (September 1, 1994)


Lecturer: Jack Lidmar, Room A4:1081 in AlbaNova, Email: jlidmar@kth.se


Exercise class teacher: Mikael Twengström, AlbaNova main building, Email: mikaeltw@kth.se


There will be two types of homework problems:

  1. Weekly homework problems that will be handed out regularly during the course. These consist of rather easy problems that you should solve and bring to the exercise class indicated on the problem sheet. The problems will then be discussed and corrected during class. This means you will also have to participate during these classes. If you have done a good effort at solving the problem you will get bonus points on the exam: Each problem corresponds to half a point on the exam and there will be 12 of them, so that in total you will be able to gain 6 bonus points = one problem on the exam.  These points will be added only to the first problem on the exam (although not exceeding the maximum 6p).
  2. There will be one set of slightly more difficult homework problems, which will be handed in later on in the course. This can give an additional 6 points which is added to the total points of the final exam.


Friday October 20, 8.00-13.00

The examination consists of 5 problems, each giving 6 points.
The maximum number of points including the homework is therefore 5*6 + 6 = 36.

Allowed material:

  1. pocket calculator
  2. BETA (mathematics table) or equivalent.
  3. Formula collection (please report any mistakes)

Preliminary grading system

Points Grade Description
30 A In an excellent way account for and use all the knowledge elements included in the learning outcomes
26 B In a very good way account for and use all the knowledge elements included in the learning outcomes
22 C In a good, although not perfect, way account for and use all the knowledge elements included in the learning outcomes
19 D

In a satisfactory way account for and use all the knowledge elements included in the learning outcomes

15 E In a sufficient way account for and use the knowledge elements included in the learning outcomes
0 F Insufficient with respect to the learning outcomes

(This may be adjusted depending on the difficulty of the exam...)


Ingen aktivitet senaste månaden. Gå till Nyhetsflödet för att se äldre.

Feedback Nyheter