Till innehåll på sidan

Publikationer

50 senaste publikationerna

[2]
A. Kravberg et al., "Active Nearest Neighbor Regression Through Delaunay Refinement," i Proceedings of the 39th International Conference on Machine Learning, 2022, s. 11650-11664.
[4]
A. Shatskiy, G. R. Alvey och M. D. Kärkäs, "Chemodivergent difunctionalization of alkenes through base-controlled radical relay," Chem, vol. 8, no. 1, s. 12-14, 2022.
[5]
G. Magallanes, M. D. Kärkäs och C. R. J. Stephenson, "Depolymerization of Lignin by Homogeneous Photocatalysis," i Springer Handbook of Inorganic Photochemistry, : Springer Nature, 2022, s. 1537-1562.
[6]
[7]
L. Li et al., "Efficient dye-sensitized solar cells based on bioinspired copper redox mediators by tailoring counterions," Journal of Materials Chemistry A, vol. 10, no. 8, s. 4131-4136, 2022.
[8]
Y. Song et al., "Engineering MoOx/MXene Hole Transfer Layers for Unexpected Boosting of Photoelectrochemical Water Oxidation," Angewandte Chemie International Edition, vol. 61, no. 16, 2022.
[10]
C. Zhou et al., "Highly congested spiro-compounds via photoredox-mediated dearomative annulation cascade," Communications Chemistry, vol. 5, no. 1, 2022.
[15]
T. Liu, "Outer Coordination Spheres Engineering of Ru-based Molecular Water Oxidation Catalysts," Doktorsavhandling Stockholm : KTH Royal Institute of Technology, TRITA-CBH-FOU, 2022:23, 2022.
[16]
A. Shatskiy och M. D. Kärkäs, "Photoredox-Enabled Decarboxylative Synthesis of Unnatural α-Amino Acids," Synlett : Accounts and Rapid Communications in Synthetic Organic Chemistry, vol. 33, no. 2, s. 109-115, 2022.
[18]
[19]
Y. Shang et al., "Pyrrolic N or pyridinic N : The active center of N-doped carbon for CO2 reduction," Cuihuà xuébào, vol. 43, no. 9, s. 2405-2413, 2022.
[20]
[21]
D. L. Avetyan et al., "Scalable total synthesis of natural vanillin-derived glucoside omega-esters," Carbohydrate Research, vol. 522, s. 108683, 2022.
[22]
J. Li, Z. Szabo och M. Jonsson, "Stability of Studtite in Saline Solution : Identification of Uranyl- Peroxo-Halo Complex," Inorganic Chemistry, vol. 61, no. 22, s. 8455-8466, 2022.
[24]
T. Liu och L. Sun, "The future challenges in molecular water oxidation catalysts," Journal of Energy Challenges and Mechanics, vol. 73, s. 643-645, 2022.
[25]
V. Polianskii et al., "Voronoi Density Estimator for High-Dimensional Data: Computation, Compactification and Convergence," i Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, 2022, s. 1644-1653.
[26]
D. Zhou et al., "WO3 Nanosheet-Supported IrW Alloy for High-Performance Acidic Overall Water Splitting with Low Ir Loading," ACS Applied Energy Materials, vol. 5, no. 1, s. 970-980, 2022.
[27]
[28]
[31]
F. Schaufelberger och O. Ramström, "Activated Self-Resolution and Error-Correction in Catalytic Reaction Networks," Chemistry - A European Journal, vol. 27, no. 40, s. 10335-10340, 2021.
[32]
A. Shatskiy et al., "Back cover," Chemical Science, vol. 12, no. 15, s. 5430-5437, 2021.
[33]
B. Zhang, O. Kravchenko och L. Sun, "Bio-inspired water oxidation catalysts," i Comprehensive Coordination Chemistry III, : Elsevier BV, 2021, s. 589-610.
[34]
L. Ran et al., "Conformal Macroporous Inverse Opal Oxynitride-Based Photoanode for Robust Photoelectrochemical Water Splitting," Journal of the American Chemical Society, vol. 143, no. 19, s. 7402-7413, 2021.
[35]
A. Shatskiy, J. Liu och M. D. Kärkäs, "Controlling Radical Relay Processes with Visible Light," Chem, vol. 7, no. 2, s. 283-285, 2021.
[36]
J. Li et al., "Dye-sensitized photoanode decorated with pyridine additives for efficient solar water oxidation," Cuihuà xuébào, vol. 42, no. 8, s. 1352-1359, 2021.
[37]
A. Shatskiy, J.-Q. Liu och M. D. Kärkäs, "Electrifying catalytic aerobic oxidation," NATURE CATALYSIS, vol. 4, no. 2, s. 96-97, 2021.
[39]
J. Yi et al., "Electrostatic Interactions Accelerating Water Oxidation Catalysis via Intercatalyst O-O Coupling," Journal of the American Chemical Society, vol. 143, no. 6, s. 2484-2490, 2021.
[40]
C. Wang et al., "Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction," Angewandte Chemie International Edition, vol. 60, no. 52, s. 27126-27134, 2021.
[41]
J. C. Zirignon et al., "Experimental review of PEI electrodeposition onto copper substrates for insulation of complex geometries," RSC Advances, vol. 11, no. 55, s. 34599-34604, 2021.
[42]
X. Wu et al., "Exploration of electrocatalytic water oxidation properties of NiFe catalysts doped with nonmetallic elements (P, S, Se)," International journal of hydrogen energy, vol. 46, no. 79, s. 38992-39002, 2021.
[44]
Z. Deng et al., "Helical Copper Redox Mediator with Low Electron Recombination for Dye-Sensitized Solar Cells," ACS Sustainable Chemistry and Engineering, vol. 9, no. 15, s. 5252-5259, 2021.
[45]
H. Song et al., "Herding by caging : a formation-based motion planning framework for guiding mobile agents," Autonomous Robots, vol. 45, no. 5, s. 613-631, 2021.
[47]
Y. Zhao et al., "Identification of M-NH2-NH2 Intermediate and Rate Determining Step for Nitrogen Reduction with Bioinspired Sulfur-Bonded FeW Catalyst," Angewandte Chemie International Edition, vol. 60, no. 37, s. 20331-20341, 2021.
[48]
D. Zhou et al., "In Situ Induced Crystalline-Amorphous Heterophase Junction by K+ to Improve Photoelectrochemical Water Oxidation of BiVO4," ACS Applied Materials and Interfaces, vol. 13, no. 2, s. 2723-2733, 2021.
[49]
G. L. Marchetti et al., "Learning Coarsened Dynamic Graph Representations for Deformable Object Manipulation," i 2021 20Th International Conference On Advanced Robotics (ICAR), 2021, s. 955-960.
[50]
X. Wu et al., "Metalloid Te-Doped Fe-Based Catalysts Applied for Electrochemical Water Oxidation," CHEMISTRYSELECT, vol. 6, no. 24, s. 6154-6158, 2021.
Innehållsansvarig:Peter Dinér
Tillhör: Institutionen för kemi
Senast ändrad: 2019-01-14