Skip to main content
To KTH's start page To KTH's start page

Search by tag

Number of hits: 5

  • eLITHE – Electrification of ceramic industries high temperature heating equipment

    eLITHE aims to support the electrification of the ceramic industries by demonstrating sustainable and cost-effective pathways to electrify high temperature thermal processes (>1,000ºC) from the ceramic industry. Three different processes will be demonstrated at 3 different pilot sites at relevant scale: 1. A ceramic frits smelter (1,100-1,500ºC) combining induction and resistive heating through electrodes. 2. A microwave-based calcination furnace (1,200ºC) for the calcination of alumina. 3. A tunnel kiln (1,100ºC) combining radiant walls and flexible hybrid burners for bricks and tiles firing. These technologies will be endorsed through the application of advanced modelling techniques to develop Digital Twins (DTs) of each of them, as a core tool to support design and operation. eLITHE will also involve material science to develop novel products and refractory materials compositions adapted to the new requirements of electrified processes and will test waste materials derived from the ceramic industry for high temperature energy storage applications, improving the sector circularity.

  • SHARP-SCO2 – Solar Hybrid Air-sCO2 Power Plants

    SHARP-sCO2 addresses key technological challenges to enable the development of a new generation of highly efficient and flexible CSP plants. Keeping on working with CSP-sCO2 power cycles and investigating how to exploit air as operating fluid, SHARP-sCO2 will develop and validate novel enabling technologies in EU top level labs. SHARP-sCO2 will attain high temperatures and cycle efficiency, while guaranteeing reliable and flexible operation. Introducing a smart hybridization with PV by means of an innovative electric heaters, SHARP-sCO2 will maximize sCO2 operation and remuneration, exploiting PV affordability while counting on the unique energy storage capabilities of CSP.

  • RIHOND – Renewable Industrial Heat On Demand

    The aim of this project is to design, assess and develop an innovative technical cost-effective solutions for integrated power-to-heat and thermal energy storage systems to satisfy the heat demand of the hard to abate industrial sector. The final goal of the project is to provide design recommendations for Kyoto Group’s next generation thermal energy storage and power-to-heat solution.

  • HYBRIDplus – Advanced HYBRID solar plant with PCM storage solutions in sCO2 cycles

    HYBRIDplus aims to pioneer the next generation of CSP with an advanced high-density and high-temperature thermal energy storage (TES) system capable of providing a high degree of dispatchability at a low cost and with a much lower environmental burden than the State of the Art. This thermal storage is based on the Phase Change Material (PCM) technology in a cascade configuration that can reproduce the effect of a thermocline and integrates recycled metal wool in its nucleus. This enables hybridization with PV by acting as an electric heater transforming non-dispatchable renewable electricity into thermal stored energy ready to be dispatched when needed. HYBRIDplus proposes a novel concept to hybridize PV+Cascade PCM-TES with CSP configuration based on a high-temperature supercritical CO2 cycle working at 600 ºC. This new plant is called to form the backbone of the next-generation energy system thanks to higher efficiency and lower LCOE than state-of-the-art technology.

  • SUSHEAT — Smart Integration of Waste and Renewable Energy for Sustainable Heat Upgrade in the Industry

    SUSHEAT faces the main technological challenges to address the development of the key components for a new generation of highly efficient industrial heat upgrade systems fed by Renewable Energy Sources (RES) and waste heat recuperation. SUSHEAT technologies will explore renewable-based flexible and reliable heating solutions to power industrial processes. This will enable industry to transition away from polluting carbon-intensive fuels that dominate the energy mix. New and existing AI-assisted systems will be explored for optimal heat harvest, conversion and upgrade, and storage.