Skip to main content
To KTH's start page To KTH's start page

Search by tag

Number of hits: 3

  • Analysis of PV system in Sweden

    Sweden requires to accelerate the solar power capacity in order to fulfill the goals that 100% renewable in power sector by 2040. However, there are still many challenges for PV installation in Sweden. This project explores the potential and feasibility of decentralized PV system in a Swedish context, including consideration of space, climate, infrastructure, and economics. A new model is developed and simulated based on a real Swedish case. The main aim is to design and improve PV systems with better compatibility with grid and consumer behaviors.

  • Towards Sustainable Energy Communities: A Case Study of Two Swedish Pilot Projects

    Energy communities (Energigemenskaper) offer a promising solution to address today’s energy challenges. This project, in collaboration with RISE and other eight partners, comprehensively explores energy communities within technical, environmental, economic and social contexts. Two pilot districts are studied, showcasing new construction buildings in Örebro and existing buildings in Stockholm. The project aims to develop guidelines involving new technologies, services, business models, and policies, with the objective to reduce power peak demand and increase energy savings. This project locates Sweden as an innovative energy leader by promoting collaborative social transformation and leading local communities to pursue common goals such as reducing energy costs and achieving self-sufficiency.

  • EVAccel — Accelerating the Integration of Electric Vehicles in a Smart and Robust Electricity Infrastructure

    The project aims to develop a new standard for dimensioning and operating electrical grids specifically for electric vehicle charging. For this, load flow analysis will be conducted at different voltage levels of the network in order to quantify the effect that charging strategies and behaviors have on the aggregated power ratios of the network. The calculated ratios will help distribution system operators in swiftly identifying network bottlenecks and take the necessary measures such as load management and new investments to ensure that electric vehicle penetration can continue to grow at an accelerated rate without threatening the robustness of the network.