Hoppa till huvudinnehållet

Publikationer av Dan Zenkert

Refereegranskade

Artiklar

[2]
[3]
D. Zenkert et al., "Multifunctional carbon fibre composites using electrochemistry," Composites Part B : Engineering, vol. 273, 2024.
[4]
I. Katsivalis et al., "Strength analysis and failure prediction of thin tow-based discontinuous composites," Composites Science And Technology, vol. 245, 2024.
[5]
A. Ishfaq et al., "Multifunctional design, feasibility and requirements for structural power composites in future electric air taxis," Journal of composite materials, vol. 57, no. 4, s. 817-827, 2023.
[6]
Y. D. Yucel et al., "Powder-impregnated carbon fibers with lithium iron phosphate as positive electrodes in structural batteries," Composites Science And Technology, vol. 241, s. 110153, 2023.
[7]
R. Harnden et al., "Multifunctional Carbon Fiber Composites : A Structural, Energy Harvesting, Strain-Sensing Material," ACS Applied Materials and Interfaces, vol. 14, no. 29, s. 33871-33880, 2022.
[8]
L. E. Asp et al., "A Structural Battery and its Multifunctional Performance," Advanced Energy and Sustainability Research, vol. 2, no. 3, 2021.
[9]
W. Johannisson et al., "A screen-printing method for manufacturing of current collectors for structural batteries," Multifunctional Materials, vol. 4, no. 3, s. 035002, 2021.
[11]
W. Johannisson et al., "A residual performance methodology to evaluate multifunctional systems," Multifunctional Materials, vol. 3, no. 2, 2020.
[13]
W. Johannisson et al., "Shape-morphing carbon fiber composite using electrochemical actuation," Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 14, s. 7658-7664, 2020.
[14]
L. M. Schneider et al., "Bicontinuous Electrolytes via Thermally Initiated Polymerization for Structural Lithium Ion Batteries," ACS Applied Energy Materials, vol. 2, no. 6, s. 4362-4369, 2019.
[15]
M. Burman, F. Stig och D. Zenkert, "Blister propagation in sandwich panels," Journal of Sandwich Structures and Materials, vol. 21, no. 5, s. 1683-1699, 2019.
[16]
L. E. Asp et al., "Carbon Fibre Composite Structural Batteries: A Review," Functional Composites and Structures, 2019.
[17]
D. Zenkert och L. A. Carlsson, "Editorial," Journal of Sandwich Structures and Materials, vol. 21, no. 5, s. 1619-1620, 2019.
[18]
K. Peuvot et al., "Lignin based electrospun carbon fiber anode for sodium ion batteries," Journal of the Electrochemical Society, vol. 166, no. 10, s. A1984-A1990, 2019.
[19]
W. Johannisson och D. Zenkert, "Model of a structural battery and its potential for system level mass savings," Multifunctional Materials, 2019.
[20]
M. Zackrisson et al., "Prospective Life Cycle Assessment of a Structural Battery," Sustainability, vol. 11, no. 20, 2019.
[21]
[22]
J. Hagberg et al., "Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries," Composites Science And Technology, vol. 162, s. 235-243, 2018.
[23]
R. Harnden et al., "Multifunctional Performance of Sodiated Carbon Fibers," Journal of the Electrochemical Society, vol. 165, no. 13, s. B616-B622, 2018.
[24]
W. Johannisson et al., "Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries," Composites Science And Technology, vol. 168, s. 81-87, 2018.
[25]
D. Zenkert och L. A. Carlsson, "Prof. Karl-Axel Olsson (1933-2018) Obituary," Journal of Sandwich Structures and Materials, vol. 20, no. 4, s. 512-513, 2018.
[26]
F. Dionisi, R. Harnden och D. Zenkert, "A model to analyse deformations and stresses in structural batteries due to electrode expansions," Composite structures, vol. 179, s. 580-589, 2017.
[27]
N. Ihrner et al., "Structural lithium ion battery electrolytes via reaction induced phase-separation," Journal of Materials Chemistry A, vol. 5, no. 48, s. 25652-25659, 2017.
[28]
C. Schneider et al., "Bending energy absorption of self-reinforced poly(ethylene terephthalate) composite sandwich beams," Composite structures, vol. 140, s. 582-589, 2016.
[29]
C. Schneider et al., "Impact response of ductile self-reinforced composite corrugated sandwich beams," Composites Part B : Engineering, vol. 99, s. 121-131, 2016.
[32]
P. Mårtensson, D. Zenkert och M. Åkermo, "Cost and weight efficient partitioning of composite automotive structures," Polymer Composites, 2015.
[33]
C. Schneider et al., "Dynamic compression response of self-reinforced poly(ethylene terephthalate) composites and corrugated sandwich cores," Composites. Part A, Applied science and manufacturing, vol. 77, s. 96-105, 2015.
[34]
P. Mårtensson, D. Zenkert och M. Åkermo, "Effects of manufacturing constraints on the cost and weight efficiency of integral and differential automotive composite structures," Composite structures, vol. 134, s. 572-578, 2015.
[35]
P. Mårtensson, D. Zenkert och M. Åkermo, "Integral versus differential design for high-volume manufacturing of composite structures," Journal of composite materials, vol. 49, no. 23, s. 2897-2908, 2015.
[36]
P. Mårtensson, D. Zenkert och M. Åkermo, "Method for cost and weight-efficient material diversity and partitioning of a carbon fibre composite body structure," Proceedings of the Institution of mechanical engineers. Part D, journal of automobile engineering, 2015.
[37]
E. Jacques et al., "Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers," ACS Applied Materials and Interfaces, vol. 7, no. 25, s. 13898-13904, 2015.
[38]
M. N. Velea, P. Wennhage och D. Zenkert, "Multi-objective optimisation of vehicle bodies made of FRP sandwich structures," Composite structures, vol. 111, s. 75-84, 2014.
[39]
S. Kazemahvazi, M. Nilsson och D. Zenkert, "Residual strength of GRP laminates with multiple randomly distributed fragment impacts," Composites. Part A, Applied science and manufacturing, vol. 60, s. 66-74, 2014.
[40]
[41]
C. Schneider et al., "Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites," Polymer testing, vol. 32, no. 2, s. 221-230, 2013.
[43]
E. Jacques et al., "Piezo-electrochemical effect in lithium-intercalated carbon fibres," Electrochemistry communications, vol. 35, s. 65-67, 2013.
[44]
J. Ekh, J. Schön och D. Zenkert, "Simple and efficient prediction of bearing failure in single shear, composite lap joints," Composite structures, vol. 105, s. 35-44, 2013.
[45]
S. Kazemahvazi, B. P. Russell och D. Zenkert, "Impact of carbon fibre/epoxy corrugated cores," Composite structures, vol. 94, no. 11, s. 3300-3308, 2012.
[46]
E. Jacques et al., "Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries," Composites Science And Technology, vol. 72, no. 7, s. 792-798, 2012.
[47]
F. Latourte et al., "Failure mechanisms in composite panels subjected to underwater impulsive loads," Journal of the mechanics and physics of solids, vol. 59, no. 8, s. 1623-1646, 2011.
[48]
D. Zenkert och M. Burman, "Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams," International Journal of Fatigue, vol. 33, no. 2, s. 217-222, 2011.
[49]
D. Zenkert och M. Burman, "Fatigue of closed-cell foams in compression," Journal of Sandwich Structures and Materials, vol. 13, no. 4, s. 467-478, 2011.
[50]
M. Kaufmann, D. Zenkert och M. Åkermo, "Material Selection for a Curved C-Spar Based on Cost Optimization," Journal of Aircraft, vol. 48, no. 3, s. 797-804, 2011.
[51]
M. Hellqvist Kjell et al., "PAN-based carbon fiber negative electrodes for structural lithium-ion batteries," Journal of the Electrochemical Society, vol. 158, no. 12, s. A1455-A1460, 2011.
[52]
H. Kolsters och D. Zenkert, "Buckling of laser-welded sandwich panels : ultimate strength and experiments," Journal of Engineering for the Maritime Environment (Part M), vol. 224, no. M1, s. 29-45, 2010.
[53]
M. Kaufmann, D. Zenkert och M. Åkermo, "Cost/weight optimization of composite prepreg structures for best draping strategy," Composites. Part A, Applied science and manufacturing, vol. 41, no. 4, s. 464-472, 2010.
[54]
M. Kaufmann, D. Zenkert och P. Wennhage, "Integrated cost/weight optimization of aircraft structures," Structural and multidisciplinary optimization (Print), vol. 41, no. 2, s. 325-334, 2010.
[55]
S. Kazemahvazi, J. Kiele och D. Zenkert, "Tensile strength of UD-composite laminates with multiple holes," Composites Science And Technology, vol. 70, no. 8, s. 1280-1287, 2010.
[56]
K. Zimmermann, D. Zenkert och M. Siemetzki, "Testing and analysis of ultra thick composites," Composites Part B : Engineering, vol. 41, no. 4, s. 326-336, 2010.
[57]
S. Kazemahvazi och D. Zenkert, "Corrugated all-composite sandwich structures. Part 1 : Modeling," Composites Science And Technology, vol. 69, no. 7-8, s. 913-919, 2009.
[58]
S. Kazemahvazi, D. Tanner och D. Zenkert, "Corrugated all-composite sandwich structures. Part 2 : Failure mechanisms and experimental programme," Composites Science And Technology, vol. 69, no. 7-8, s. 920-925, 2009.
[59]
M. Kaufmann, T. Czumanski och D. Zenkert, "Manufacturing process adaptation for integrated cost/weight optimisation of aircraft structures," Plastics, rubber and composites, vol. 38, no. 2, s. 162-166(5), 2009.
[60]
S. Kazemahvazi, D. Zenkert och M. Burman, "Notch and Strain Rate Sensitivity of Non-Crimp Fabric Composites," Composites Science And Technology, vol. 69, no. 6, s. 793-800, 2009.
[61]
D. Zenkert och M. Burman, "Tension, compression and shear fatigue of a closed cell polymer foam," Composites Science And Technology, s. 785-792, 2009.
[62]
C. Stamblewski, B. V. Sankar och D. Zenkert, "Analysis of three-dimensional quadratic failure criteria for thick composites using the direct micromechanics method," Journal of composite materials, vol. 42, no. 7, s. 635-654, 2008.
[63]
M. Kaufmann, D. Zenkert och C. Mattei, "Cost optimization of composite aircraft structures including variable laminate qualities," Composites Science And Technology, vol. 68, no. 13, s. 2748-2754, 2008.
[64]
H. Kolsters och D. Zenkert, "Buckling of laser-welded sandwich panels. Part 1 : Elastic buckling parallel to the webs," Journal of Engineering for the Maritime Environment (Part M), vol. 220, no. 2, s. 69-79, 2006.
[65]
H. Kolsters och D. Zenkert, "Buckling of laser-welded sandwich panels. Part 2 : Elastic buckling normal to the webs," Journal of Engineering for the Maritime Environment (Part M), vol. 220, no. 2, s. 81-94, 2006.
[66]
D. Zenkert, A. Shipsha och M. Burman, "Fatigue of closed cell foams," Journal of Sandwich Structures and Materials, vol. 8, no. 6, s. 517-538, 2006.
[67]
A. Shipsha och D. Zenkert, "Compression-after-impact strength of sandwich panels with core crushing damage," Applied Composite Materials, vol. 12, no. 04-mar, s. 149-164, 2005.
[68]
D. Zenkert et al., "Damage tolerance assessment of composite sandwich panels with localised damage," Composites Science And Technology, vol. 65, no. 15-16, s. 2597-2611, 2005.
[69]
L. Fagerberg och D. Zenkert, "Effects of anisotropy and multiaxial loading on the wrinkling of sandwich panels," Journal of Sandwich Structures and Materials, vol. 7, no. 3, s. 177-194, 2005.
[70]
L. Fagerberg och D. Zenkert, "Imperfection-induced wrinkling material failure in sandwich panels," Journal of Sandwich Structures and Materials, vol. 7, no. 3, s. 195-219, 2005.
[71]
V. Rizov, A. Shipsha och D. Zenkert, "Indentation study of foam core sandwich composite panels," Composite structures, vol. 69, no. 1, s. 95-102, 2005.
[72]
D. Zenkert, A. Shipsha och K. Persson, "Static indentation and unloading response of sandwich beams," Composites Part B : Engineering, vol. 35, no. 08-jun, s. 511-522, 2004.
[73]
A. Shipsha, S. Hallström och D. Zenkert, "Failure mechanisms and modelling of impact damage in sandwich beams - A 2D approach : Part I - Experimental investigation," Journal of Sandwich Structures and Materials, vol. 5, no. 1, s. 7-31, 2003.
[74]
A. Shipsha, S. Hallström och D. Zenkert, "Failure mechanisms and modelling of impact damage in sandwich beams - A 2D approach : Part II - Analysis and modelling," Journal of Sandwich Structures and Materials, vol. 5, no. 1, s. 33-51, 2003.
[75]
A. Shipsha och D. Zenkert, "Fatigue behavior of foam core sandwich beams with sub-interface impact damage," Journal of Sandwich Structures and Materials, vol. 5, no. 2, s. 147-160, 2003.

Konferensbidrag

[76]
D. Carlstedt et al., "Conceptual design framework for laminated structural battery composites," i ECCM 2018 - 18th European Conference on Composite Materials, 2020.
[77]
D. Zenkert, G. Lindbergh och M. Johansson, "Carbon fibre composites as batteries, sensors, actuators and for energy harvesting," i ICCM International Conferences on Composite Materials, 2019.
[78]
L. M. Schneider et al., "Feasible manufacturing technique and mechanical properties of structural battery electrodes," i ICCM International Conferences on Composite Materials, 2019.
[79]
T. B. C. Braz et al., "Thick ply versus thin ply composite laminate stiffened panel buckling and post-buckling behavior," i ICCM International Conferences on Composite Materials, 2017.
[80]
P. Mårtensson, D. Zenkert och M. Åkermo, "The effects of cost and weight efficient structural design for manufacturing of composite automotive body structures," i 20th International Conference on Composite Materials Copenhagen, 19-24th July 2015, 2015.
[81]
P. Mårtensson, D. Zenkert och M. Åkermo, "INTEGRAL OR DIFFERENTIAL DESIGN FOR A COST EFFECTIVE COMPOSITE AUTOMOTIVE BODY STRUCTURE," i 16th European Conference on Composite Materials, ECCM 2014, 2014.
[82]
E. Jacques et al., "Performance of lithium-intercalated carbon fibres for structural electrode applications," i ICCM International Conferences on Composite Materials, 2013, s. 6852-6859.
[83]
E. Jacques et al., "Effect of lithium-ion intercalation on the tensile properties of carbon fibres for energy storage composites," i ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, 2012.
[84]
M. Hellqvist Kjell et al., "PAN-based carbon fibers for structural lithium-ion batteries," i ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, 2012.
[85]
S. Sisoida et al., "Fatigue of composites with in-situ full-field strain measurements," i International Conference on Composite Materials 18, Korea, 2011.
[86]
D. Zenkert, S. Kazemahvazi och M. Burman, "Fatigue of sandwich beams under localised loads," i ICCM International Conferences on Composite Materials, 2011.
[87]
S. Sisodia et al., "Fatigue testing of composites with in-situ full-field strain measurement," i ICCM International Conferences on Composite Materials, 2011.
[88]
E. Jacques et al., "Impact of mechanical loading on the electrochemical behaviour of carbon fibers for use in energy storage composite materials," i ICCM18 International Conferences on Composite Materials 18, 2011.
[89]
S. Kazemahvazi, J. Kiele och D. Zenkert, "Strength of GRP-Laminates with Multiple Fragment Damages," i ICCM-17 17th International Conference on Composite Materials, 2009.
[90]
S. Kazemahvazi, J. Kiele och D. Zenkert, "Strength of GRP-laminates with multiple fragment damages," i Proceedings of the ICCM International Conferences on Composite Materials : ICCM-17, 2009.
[91]
M. Kaufmann, D. Zenkert och P. Wennhage, "Integrated cost/weight optimization of composite skin/stringer elements," i Proceedings of the 16th International Conference on Composite Materials, 2007, s. 325-334.
[92]
D. Zenkert och M. Burman, "Tension, compression and shear fatigue of a closed cell foam," i 16th International Conference on Composite Materials, ICCM-16, 2007.
[93]
C. Stamblewski, B. V. Sankar och D. Zenkert, "Three-dimensional quadratic failure criteria for thick composites using the Direct Micromechanics Method," i American Society for Composites - 22nd Technical Conference of the American Society for Composites 2007 - Composites : Enabling a New Era in Civil Aviation, 2007, s. 612-631.
[94]
D. Zenkert, A. Shipsha och M. Burman, "Fatigue of closed cell foams," i Sandwich Structures7 : Advancing with Sandwich Structures and Materials, 2005, s. 171-181.
[95]
B. Hayman och D. Zenkert, "The Influence of Defects and Damage on the Strength of FRPSandwich Panels for Naval Ships," i 9th Int. Symp. on Practical Design of Ships and Other Floating Structures (PRADS 2004), 2004, s. 719-726.

Kapitel i böcker

[96]
D. Zenkert, "Damage Tolerance of Naval Sandwich Panels," i Major Accomplishments in Composite Materials and Sandwich Structures : An Anthology of ONR Sponsored Research, I.M. Daniel, E.E. Gdoutos, Y.D.S. Rajapakse red., : Springer Publishing Company, 2009, s. 279-303.

Icke refereegranskade

Konferensbidrag

[97]
D. Zenkert, G. Lindbergh och M. Johansson, "Carbon fibre composites as batteries, sensors, actuators and energy harvesting," i International Conference on Composite Materials ICCM22, 2019.
[98]
W. Johannisson et al., "Modelling and design of structural batteries with life cycle assessment," i 22nd INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM22), 2019.
[99]
K. Bouton et al., "Structural Positive Electrodes for Multifunctional Composite Materials.," i Proceedings of the 2019 International Conference on Composite Materials, 2019.
[100]
W. Johannisson et al., "Analysis of Carbon Fiber Composite Electrode," i Proceedings of the 20th International Conference on Composite Materials Copenhagen, 19 - 24th July 2015, 2015.
[101]
D. Zenkert et al., "Multifunctional Composite Materials using Lithium Ion Functionalization," i International Conference on Composite Materials 20, ICCM-20, Copenhagen, Denmark, 2015, 2015.
[102]
C. Schneider et al., "HIGH STRAIN RATE COMPRESSIVE BEHAVIOUR OF SELF REINFORCED- POLY(ETHYLENE TEREPHTALATE) COMPOSITE CORRUGATED CORES," i THE 19TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, July 28 -August 2, Montréal, Canada, 2013, 2013, s. 6027-6037.
[104]
S. Kazemahvazi, M. Nilsson och D. Zenkert, "Residual Strength of Full Scale GRP Laminates with Randomly Distributed Fragment Damages," i International Conference on Composite Materials 19, 2013.
[105]
D. Zenkert, S. Kazemahvazi och M. Burman, "Fatigue of foam core sandwich beams under localized loads," i International Conference on Composite Materials 18, 2011.
[107]
D. Zenkert, M. Kaufmann och M. Åkermo, "Optimisation of Composite Stuctures : Design for Cost," i International Conference for Composites 21st Century : Current and Future Trends, 2011.
[108]
S. Kazemahvazi och D. Zenkert, "Strength of multi-axial laminates with multiple randomly distributed holes," i International Conference on Composite Materials 18, 2011.
[109]
S. Kazemahvazi et al., "Impact Properties of Corrugated Composite Sandwich Cores," i International Conference on Sandwich Structures ,ICSS9, 2010.
[110]
M. Burman, A. Rosén och D. Zenkert, "Spectrum Slam Fatigue Loading of Sandwich Materials for Marine Structures," i Ninth International Conference on Sandwich Structures (ICSS-9) in Pasadena, California, 14-16 June 2010, 2010.
[111]
D. Zenkert och M. Burman, "Failure Mode Shifts in Fatigue of Sandwich Beams," i International Conference on Composite Materials 17, 2009.
[112]
K. Zimmermann, M. Siemetzki och D. Zenkert, "Analysis and Manufacturing of Ultra Thick Laminates for Future Aircraft Applications," i ECCM-13, 2008, 2008.
[113]
M. Kaufmann, T. Czumanski och D. Zenkert, "Manufacturing Process Adaptation for the Cost/Weight Optimization of Aircraft Structures," i European Conference on Composite Materials 13, Stockholm, 2008.
[114]
L. Fagerberg och D. Zenkert, "Reasonable Knock-Down Factors for Sandwich Face Wrinkling," i European Conference on Composite Materials 13, 2008.
[115]
S. Kazemahvazi och D. Zenkert, "The Compressive and Shear Responde of Corrugated Hierarchical and Foam Filled Sandwich Structures," i 8th International Conference on Sandwich Structures ICSS 8, 2008.
[116]
S. Kazemahvazi, D. Zenkert och M. Burman, "NOTCH AND STRAIN RATE SENSITIVITY OF NON CRIMP FABRIC COMPOSITES," i ICCM16, 2007.
[117]
D. Zenkert, S. Hallström och P. Wennhage, "Higher education in sandwich structures," i 6th International Conference on Sandwich Construction, 2003.

Böcker

[118]
D. Zenkert, The Handbook of Sandwich Construction. Engineering Materials Advisory Services, 1997.

Proceedings (redaktörskap)

Senaste synkning med DiVA:
2024-04-21 02:09:53