Artificial Neural Networks and Other Learning Systems

Innehåll visas utifrån dina val

Om du inte hittar någon sida, schemahändelse eller nyhet på din kurswebb kan det bero på att du inte ser den kursomgången/gruppen inom kursen som innehållet tillhör.

Veta mer om din kurswebb

Din kurswebb är sidorna för en kurs du prenumererar på. Du väljer sedan vilka omgångar/grupper inom kursen du vill ha information från. Är du registrerad på en kursomgång sköts prenumeration och val av kursomgäng automatiskt åt dig. Vill du ändra något av detta gör du det under Mina inställningar.

När du är inloggad på din kurswebb ser du:
  • Kursöversikt, nyheter och schema med information som är filtrerat utifrån dina valda omgångar/grupper inom kursen
  • Allmänna sidor för hela kursen
  • Kurswikin som är sidor som alla, lärare och studenter, kan skapa och redigera
  • Sidor som hör till de omgångar/grupper inom kursen du valt eller som valts för dig

Log in to your course web

You are not logged in KTH, so we cannot customize the content.

Course main content

The course covers algorithms which gets its computational capabilities by training from examples. There is thus no need to explicitly provide rules and instead training using measured data is performed. Learning can be done either by providing the correct answer, or be totally autonomous.

The courser also covers principles of representation of data in neural networks. The course also includes principles of hardware architectures (euro chips and neuro computers) and shows how ANN can be used in robotics. We also show applications of learning systems in areas like pattern recognition, combinatorial optimization, and diagnosis.

Eligibility

Single course students: 90 university credits including 45 university credits in Mathematics or Information Technology. English B, or equivalent.

Prerequisites

The mandatory courses in mathematics, numerical analysis and computer science for D, E, and F-students or the equivalent.

Add-on studies

DD2431 Machine learning.

Teachers

No activity in the past month. Go to News feed to see older activity

Feedback News