Publications

Our 50 latest publications

[1]
Ghorbani, M., Svagan, A. J., Grishenkov, D. (2019). Acoustic Response of a Novel Class of Pickering Stabilized Perfluorodroplets. Presented at 24th European symposium on Ultrasound Contrast Imaging.
[2]
Huang, T. (2019). Betulin-modified cellulosic textile fibers with improved water repellency, hydrophobicity and antibacterial properties (Licentiate thesis , KTH Royal Institute of Technology, TRITA-CBH-FOU 2019:14). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243638.
[3]
Han, T., Sophonrat, N., Tagami, A., Sevastyanova, O., Mellin, P. & Yang, W. (2019). Characterization of lignin at pre-pyrolysis temperature to investigate its melting problem. Fuel, 235, 1061-1069.
[4]
Han, T., Sophonrat, N., Tagami, A., Sevastyanova, O., Mellin, P. & Yang, W. (2019). Characterization of lignin at pre-pyrolysis temperature to investigate its melting problem. Fuel, 235, 1061-1069.
[5]
Huang, T., Chen, C., Li, D. & Ek, M. (2019). Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose. Cellulose (London).
[6]
Ceresino, E. B., Kuktaite, R., Sato, H. H., Hedenqvist, M. S. & Johansson, E. (2019). Impact of gluten separation process and transglutaminase source on gluten based dough properties. Food Hydrocolloids, 87, 661-669.
[7]
Ceresino, E. B., Kuktaite, R., Sato, H. H., Hedenqvist, M. S. & Johansson, E. (2019). Impact of gluten separation process and transglutaminase source on gluten based dough properties. Food Hydrocolloids, 87, 661-669.
[8]
de Carvalho, D. M., Moser, C., Lindström, M. & Sevastyanova, O. (2019). Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Industrial crops and products (Print), 127, 203-211.
[9]
[10]
Svärd, A., Moriana, R., Brannvall, E. & Edlund, U. (2019). Rapeseed Straw Biorefinery Process. ACS Sustainable Chemistry and Engineering, 7(1), 790-801.
[11]
Mushi, N. E., Nishino, T., Berglund, L. A. & Zhou, Q. (2019). Strong and Tough Chitin Film from alpha-Chitin Nanofibers Prepared by High Pressure Homogenization and Chitosan Addition. ACS Sustainable Chemistry and Engineering, 7(1), 1692-1697.
[12]
Engström, J. (2019). Tailored adhesion of PISA-latexes for cellulose modification and new materials (Doctoral thesis , KTH Royal Institute of Technology, TRITA-CBH-FOU 2019:7). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241463.
[13]
Engström, J., Benselfelt, T., Wågberg, L., D'Agosto, F., Lansalot, M., Carlmark, A. & Malmström, E. (2019). Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state. Nanoscale.
[14]
Ghaani, M., Pucillo, F., Olsson, R. T., Scampicchio, M. & Farris, S. (2018). A bionanocomposite- modified glassy carbon electrode for the determination of 4,4 0-methylene diphenyl diamine. Analytical Methods, 10(34).
[15]
Zhang, F., Cong, J., Li, Y., Bergstrand, J., Liu, H., Cai, B. ... Sun, L. (2018). A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 53, 405-414.
[16]
Alander, B., Capezza, A., Wu, Q., Johansson, E., Olsson, R. T. & Hedenqvist, M. (2018). A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial crops and products (Print), 119, 41-48.
[17]
Das, O., Loho, T. A., Capezza, A. J., Lemrhari, I. & Hedenqvist, M. S. (2018). A Novel Way of Adhering PET onto Protein (Wheat Gluten) Plastics to Impart Water Resistance. Coatings, 8(11).
[19]
Jawerth, M., Johansson, M., Lundmark, S., Gioia, C. & Lawoko, M. (2018). A retrosynthesis perspective on new thermoset resin applications based on industrial Kraft lignin. Abstract of Papers of the American Chemical Society, 255.
[20]
Wahlström, N., Harrysson, H., Undeland, I. & Edlund, U. (2018). A Strategy for the Sequential Recovery of Biomacromolecules from Red Macroalgae Porphyra umbilicalis Kützing. Industrial & Engineering Chemistry Research, 57(1), 42-53.
[21]
Latorre-Sanchez, A., Johansson, M., Zhang, Y., Malkoch, M. & Pomposo, J. A. (2018). Active quinine-based films able to release antimicrobial compounds via melt quaternization at low temperature. Journal of materials chemistry. B, 6(1), 98-104.
[22]
Colson, J., Pettersson, T., Asaadi, S., Sixta, H., Nypelo, T., Mautner, A. & Konnerth, J. (2018). Adhesion properties of regenerated lignocellulosic fibres towards poly (lactic acid) microspheres assessed by colloidal probe technique. Journal of Colloid and Interface Science, 532, 819-829.
[23]
Scaffaro, R., Maio, A., Lo Re, G., Parisi, A. & Busacca, A. (2018). Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Composites Science And Technology, 156, 166-176.
[24]
Ghanadpour, M., Wicklein, B., Carosio, F. & Wågberg, L. (2018). All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale, 10(8), 4085-4095.
[25]
Das, O., Kim, N. K., Hedenqvist, M. S., Lin, R. J. T., Sarmah, A. K. & Bhattacharyya, D. (2018). An Attempt to Find a Suitable Biomass for Biochar-Based Polypropylene Biocomposites. Environmental Management, 62(2), 403-413.
[26]
Hendrikse, N., Charpentier, G., Nordling, E. & Syrén, P.-O. (2018). Ancestral diterpene cyclases show increased thermostability and substrate acceptance. The FEBS Journal, 285(24), 4660-4673.
[27]
Hua, G., Olsen, P., Franzen, J. & Odelius, K. (2018). Anionic polycondensation and equilibrium driven monomer formation of cyclic aliphatic carbonates. RSC Advances, 8(68), 39022-39028.
[28]
Chen, C. & Ek, M. (2018). Antibacterial evaluation of CNF/PVAm multilayer modified cellulose fiber and cellulose model surface. Nordic Pulp & Paper Research Journal, 33(3), 385-396.
[29]
Ottenhall, A. (2018). Antimicrobial materials from cellulose using environmentally friendly techniques (Doctoral thesis , KTH Royal Institute of Technology, TRITA-CBH-FOU 2018:57). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-238843.
[30]
Nameer, S., Larsen, D. B., Duus, J. O., Daugaard, A. E. & Johansson, M. (2018). Biobased Cationically Polymerizable Epoxy Thermosets from Furan and Fatty Acid Derivatives. ACS Sustainable Chemistry and Engineering, 6(7), 9442-9450.
[31]
Zheng, C., Li, D. & Ek, M. (2018). Bio-based fire retardant and its application in cellulose-based thermal insulation materials. Abstract of Papers of the American Chemical Society, 255.
[32]
[33]
Paulraj, T. & Svagan, A. J. (2018). Bioinspired capsules based on nanocellulose, xyloglucan and pectin for biomedical applications. Abstract of Papers of the American Chemical Society, 255.
[34]
Berglund, L. & Burgert, I. (2018). Bioinspired Wood Nanotechnology for Functional Materials. Advanced Materials, 30(19).
[35]
Svärd, A., Sterner, M. & Edlund, U. (2018). Bioplastics and composites from plant heteropolysaccharides. Abstract of Papers of the American Chemical Society, 255.
[36]
Svärd, A. (2018). Biopolymers and materials from rapeseed straw biorefining (Doctoral thesis , KTH Royal Institute of Technology, TRITA-CBH-FOU 2018:38). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234656.
[37]
Medina, L. & Berglund, L. (2018). Brick-and-mortar biocomposites from cellulose nanofibrils and clay nanoplatelets. Abstract of Papers of the American Chemical Society, 255.
[38]
Paulraj, T., Crespo, G. & Svagan, A. (2018). Cage-like cellulose nanofiber-based microcapsules for electrochemical and biosensor applications. Abstract of Papers of the American Chemical Society, 256.
[39]
Karlsson, R. P., Larsson, P. T., Yu, S., Pendergraph, S. A., Pettersson, T., Hellwig, J. & Wågberg, L. (2018). Carbohydrate gel beads as model probes for quantifying non-ionic and ionic contributions behind the swelling of delignified plant fibers. Journal of Colloid and Interface Science, 519, 119-129.
[40]
Puziy, A. M., Poddubnaya, O. I. & Sevastyanova, O. (2018). Carbon Materials from Technical Lignins : Recent Advances. Topics in Current Chemistry, 376(4).
[41]
Hakkarainen, M. (2018). Carbonized biopolymers as building blocks in renewable materials. Abstract of Papers of the American Chemical Society, 256.
[42]
Gjerde, C., Mustafa, K., Hellem, S., Rojewski, M., Gjengedal, H., Yassin, M. A. ... Layrolle, P. (2018). Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Research & Therapy, 9.
[43]
Hajian, A. (2018). Cellulose–Assisted Dispersion of Carbon Nanotubes : From Colloids to Composites (Doctoral thesis , KTH Royal Institute of Technology, TRITA-CBH-FOU 2018:2). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223453.
[44]
Karlsson, P., Larsson, T. & Wågberg, L. (2018). Cellulose-based gel beads for quantifying the swelling behavior of plant fibers. Abstract of Papers of the American Chemical Society, 255.
[45]
Ottenhall, A., Henschen, J., Illergård, J. & Ek, M. (2018). Cellulose-based water purification using paper filters modified with polyelectrolyte multilayers to remove bacteria from water through electrostatic interactions. Environmental Science: Water Research & Technology.
[46]
Zheng, C. (2018). Cellulosic Thermal Insulation with Improved Water Resistance and Fire Retardancy (Doctoral thesis , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2018:29). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233516.
[47]
Pavlidis, I. V., Hendrikse, N. & Syrén, P.-O. (2018). Chapter 5: Computational Techniques for Efficient Biocatalysis. RSC Catalysis Series(32), 119-152.
[48]
Abbadessa, A., Oinonen, P. & Henriksson, G. (2018). Characterization of Two Novel Bio-based Materials from Pulping Process Side Streams : Ecohelix and CleanFlow Black Lignin. BioResources, 13(4), 7606-7627.
[49]
de Jesus, L. I., Smiderle, F. R., Ruthes, A. C., Vilaplana, F., Dal'Lin, F. T., Maria-Ferreira, D. ... Iacomini, M. (2018). Chemical characterization and wound healing property of a beta-D-glucan from edible mushroom Piptoporus betulinus. International Journal of Biological Macromolecules, 117, 1361-1366.
[50]
López Durán, V. (2018). Chemical Modification of Cellulose Fibres and Fibrils for Design of New Materials (Doctoral thesis , KTH Royal Institute of Technology, Stockholm, TRITA-CHE-Report 2018:1). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232090.
Page responsible:Kenneth Carlsson
Belongs to: Department of Fibre and Polymer Technology
Last changed: Feb 27, 2018