Publikationer

[1]
Zhang, F., Cong, J., Li, Y., Bergstrand, J., Liu, H., Cai, B. ... Sun, L. (2018). A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 53, 405-414.
[2]
Alander, B., Capezza, A., Wu, Q., Johansson, E., Olsson, R. T. & Hedenqvist, M. (2018). A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial crops and products (Print), 119, 41-48.
[4]
Wahlström, N., Harrysson, H., Undeland, I. & Edlund, U. (2018). A Strategy for the Sequential Recovery of Biomacromolecules from Red Macroalgae Porphyra umbilicalis Kützing. Industrial & Engineering Chemistry Research, 57(1), 42-53.
[5]
Latorre-Sanchez, A., Johansson, M., Zhang, Y., Malkoch, M. & Pomposo, J. A. (2018). Active quinine-based films able to release antimicrobial compounds via melt quaternization at low temperature. Journal of materials chemistry. B, 6(1), 98-104.
[6]
Scaffaro, R., Maio, A., Lo Re, G., Parisi, A. & Busacca, A. (2018). Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Composites Science And Technology, 156, 166-176.
[7]
Ghanadpour, M., Wicklein, B., Carosio, F. & Wågberg, L. (2018). All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale, 10(8), 4085-4095.
[8]
Das, O., Kim, N. K., Hedenqvist, M. S., Lin, R. J. T., Sarmah, A. K. & Bhattacharyya, D. (2018). An Attempt to Find a Suitable Biomass for Biochar-Based Polypropylene Biocomposites. Environmental Management, 62(2), 403-413.
[9]
[10]
Berglund, L. & Burgert, I. (2018). Bioinspired Wood Nanotechnology for Functional Materials. Advanced Materials, 30(19).
[11]
Svärd, A. (2018). Biopolymers and materials from rapeseed straw biorefining (Doktorsavhandling , KTH Royal Institute of Technology, TRITA-CBH-FOU 2018:38). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234656.
[12]
Medina, L. & Berglund, L. (2018). Brick-and-mortar biocomposites from cellulose nanofibrils and clay nanoplatelets. Abstract of Papers of the American Chemical Society, 255.
[13]
Karlsson, R. P., Larsson, P. T., Yu, S., Pendergraph, S. A., Pettersson, T., Hellwig, J. & Wågberg, L. (2018). Carbohydrate gel beads as model probes for quantifying non-ionic and ionic contributions behind the swelling of delignified plant fibers. Journal of Colloid and Interface Science, 519, 119-129.
[14]
Puziy, A. M., Poddubnaya, O. I. & Sevastyanova, O. (2018). Carbon Materials from Technical Lignins : Recent Advances. Topics in Current Chemistry, 376(4).
[15]
Gjerde, C., Mustafa, K., Hellem, S., Rojewski, M., Gjengedal, H., Yassin, M. A. ... Layrolle, P. (2018). Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Research & Therapy, 9.
[16]
Hajian, A. (2018). Cellulose–Assisted Dispersion of Carbon Nanotubes : From Colloids to Composites (Doktorsavhandling , KTH Royal Institute of Technology, TRITA-CBH-FOU 2018:2). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223453.
[17]
Zheng, C. (2018). Cellulosic Thermal Insulation with Improved Water Resistance and Fire Retardancy (Doktorsavhandling , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2018:29). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233516.
[18]
López Durán, V. (2018). Chemical Modification of Cellulose Fibres and Fibrils for Design of New Materials (Doktorsavhandling , KTH Royal Institute of Technology, Stockholm, TRITA-CHE-Report 2018:1). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232090.
[20]
Erdal, N. B. & Hakkarainen, M. (2018). Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots. Biomacromolecules, 19(3), 1074-1081.
[21]
Naderi, A., Koschella, A., Heinze, T., Shih, K. C., Nieh, M. P., Pfeifer, A. ... Erlandsson, J. (2018). Corrigendum to “Sulfoethylated nanofibrillated cellulose : Production and properties” [Carbohydr. Polym. 169 (2017) 515–523] (S0144861717304101) (10.1016/j.carbpol.2017.04.026)). Carbohydrate Polymers, 179.
[22]
Hult, D., Garcia-Gallego, S., Ingverud, T., Andrén, O. & Malkoch, M. (2018). Degradable High Tg Sugar Derived Polycarbonates from Isosorbide and Dihydroxyacetone. Polymer Chemistry.
[24]
Martin-Serrano Ortiz, A., Stenström, P., Antunez, P. M., Andrén, O. C. J., Torres, M. J., Montanez, M. I. & Malkoch, M. (2018). Design of multivalent fluorescent dendritic probes for site-specific labeling of biomolecules. Journal of Polymer Science Part A : Polymer Chemistry, 56(15), 1609-1616.
[25]
Martinez-Abad, A., Giummarella, N., Lawoko, M. & Vilaplana, F. (2018). Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chemistry.
[26]
Wei, X.-F., Kallio, K. J., Bruder, S., Bellander, M., Kausch, H.-H., Gedde, U. W. & Hedenqvist, M. S. (2018). Diffusion-limited oxidation of polyamide : Three stages of fracture behavior. Polymer degradation and stability, 154, 73-83.
[27]
Zhong, Q., Mi, L., Metwalli, E., Biessmann, L., Philipp, M., Miasnikova, A. ... Mueller-Buschbaum, P. (2018). Effect of chain architecture on the swelling and thermal response of star-shaped thermo-responsive (poly(methoxy diethylene glycol acrylate)-block-polystyrene)(3) block copolymer films. Soft Matter, 14(31), 6582-6594.
[28]
Qu, M., Nilsson, F. & Schubert, D. W. (2018). Effect of filler orientation on the electrical conductivity of carbon Fiber/PMMA composites. Fibers, 6(1).
[29]
Lund, A., van der Velden, N. M., Persson, N.-K., Hamedi, M. M. & Mueller, C. (2018). Electrically conducting fibres for e-textiles : An open playground for conjugated polymers and carbon nanomaterials. Materials science & engineering. R, Reports, 126, 1-29.
[30]
Kittikorn, T., Malakul, R., Strömberg, E., Ek, M. & Karlsson, S. (2018). Enhancement of mechanical, thermal and antibacterial properties of sisal/polyhydroxybutyrate-co-valerate biodegradable composite. JOURNAL OF METALS MATERIALS AND MINERALS, 28(1), 52-61.
[31]
Trovatti, E., Tang, H., Hajian, A., Meng, Q., Gandini, A., Berglund, L. A. & Zhou, Q. (2018). Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydrate Polymers, 181, 256-263.
[32]
Rovera, C., Ghaani, M., Santo, N., Trabattoni, S., Olsson, R., Romano, D. & Farris, S. (2018). Enzymatic Hydrolysis in the Green Production of Bacterial Cellulose Nanocrystals. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 6(6), 7725-7734.
[34]
Koklukaya, O. (2018). Flame-Retardant Cellulose Fibre/Fibril Based Materials via Layer-by-Layer Technique (Doktorsavhandling , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2018:8). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-225861.
[36]
Giummarella, N. (2018). Fundamental Aspects of Lignin Carbohydrate Complexes (LCC) : Mechanisms, Recalcitrance and Material concepts (Doktorsavhandling , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2018:18). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227865.
[37]
[38]
Benyahia Erdal, N., Adolfsson, K. H., Pettersson, T. & Hakkarainen, M. (2018). Green Strategy to Reduced Nanographene Oxide through Microwave Assisted Transformation of Cellulose. ACS Sustainable Chemistry and Engineering, 6(1), 1245-1255.
[39]
Norström, E. (2018). Hemicelluloses and other Polysaccharides for Wood Adhesive Applications (Doktorsavhandling , Kungliga Tekniska högskolan, TRITA-CBH-FOU 2018:22). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228298.
[41]
Granskog, V., García-Gallego, S., von Kieseritzky, J., Rosendahl, J., Stenlund, P., Zhang, Y. ... Malkoch, M. (2018). High-Performance Thiol–Ene Composites Unveil a New Era of Adhesives Suited for Bone Repair. Advanced Functional Materials.
[42]
Piri, I. S., Das, O., Hedenqvist, M. S., Vaisanen, T., Ikram, S. & Bhattacharyya, D. (2018). Imparting resiliency in biocomposite production systems : A system dynamics approach. Journal of Cleaner Production, 179, 450-459.
[43]
Brett, C., Mittal, N., Ohm, W., Söderberg, D. & Roth, S. V. (2018). In situ self-assembly study in bio-based thin films. Abstract of Papers of the American Chemical Society, 255.
[44]
Erdal, N. B., Adolfsson, K. H., De Lima, S. & Hakkarainen, M. (2018). In vitro and in vivo effects of ophthalmic solutions on silicone hydrogel bandage lens material Senofilcon A. Clinical and experimental optometry, 101(3), 354-362.
[45]
Cobo Sanchez, C. (2018). Inorganic and organic polymer-grafted nanoparticles : their nanocomposites and characterization (Doktorsavhandling , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2018:15). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226888.
[46]
Kaldéus, T., Nordenström, M., Carlmark, A., Wågberg, L. & Malmström, E. (2018). Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability. Carbohydrate Polymers, 181, 871-878.
[47]
Träger, A., Carlmark, A. & Wågberg, L. (2018). Interpenetrated Networks of Nanocellulose and Polyacrylamide with Excellent Mechanical and Absorptive Properties. Macromolecular materials and engineering (Print), 303(5).
[48]
Xu, Y., Hua, G., Hakkarainen, M. & Odelius, K. (2018). Isosorbide as Core Component for Tailoring Biobased Unsaturated Polyester Thermosets for a Wide Structure- Property Window. Biomacromolecules, 19(7), 3077-3085.
[49]
Brännström, S., Finnveden, M., Johansson, M., Martinelle, M. & Malmström, E. (2018). Itaconate based polyesters : Selectivity and performance of esterification catalysts. European Polymer Journal, 103, 370-377.
Till sidans topp