Publikationer

[1]
Alander, B., Capezza, A., Wu, Q., Johansson, E., Olsson, R. T. & Hedenqvist, M. (2018). A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial crops and products (Print), 119, 41-48.
[2]
Ceresino, E. B., Kuktaite, R., Sato, H. H., Hedenqvist, M. S. & Johansson, E. (2019). Impact of gluten separation process and transglutaminase source on gluten based dough properties. Food Hydrocolloids, 87, 661-669.
[3]
Ceresino, E. B., Kuktaite, R., Sato, H. H., Hedenqvist, M. S. & Johansson, E. (2019). Impact of gluten separation process and transglutaminase source on gluten based dough properties. Food Hydrocolloids, 87, 661-669.
[4]
Daenicke, J., Schubert, D. W., Hedenqvist, M. S., Linde, E., Sigl, T., Horch, R. E. (2019). Evaluation of the influence of crosslink density and penetrant size on the diffusion properties of silicone oils into silicone elastomers. I Proceedings of the Europe/Africa Conference Dresden 2017 – Polymer Processing Society PPS. American Institute of Physics (AIP).
[5]
Das, O., Loho, T. A., Capezza, A. J., Lemrhari, I. & Hedenqvist, M. S. (2018). A Novel Way of Adhering PET onto Protein (Wheat Gluten) Plastics to Impart Water Resistance. Coatings, 8(11).
[6]
[7]
Moyassari, A., Gkourmpis, T., Hedenqvist, M. S. & Gedde, U. W. (2019). Molecular Dynamics Simulations of Short-Chain Branched Bimodal Polyethylene : Topological Characteristics and Mechanical Behavior. Macromolecules, 52(3), 807-818.
[8]
Jawerth, M., Johansson, M., Lundmark, S., Gioia, C. & Lawoko, M. (2018). A retrosynthesis perspective on new thermoset resin applications based on industrial Kraft lignin. Abstract of Papers of the American Chemical Society, 255.
[9]
Erdal, N. B., Yao, J. G. & Hakkarainen, M. (2019). Cellulose-Derived Nanographene Oxide Surface-Functionalized Three-Dimensional Scaffolds with Drug Delivery Capability. Biomacromolecules, 20(2), 738-749.
[10]
Gazzotti, S., Rampazzo, R., Hakkarainen, M., Bussini, D., Ortenzi, M. A., Farina, H. ... Silvani, A. (2019). Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites : An in situ approach. Composites Science And Technology, 171, 94-102.
[11]
Benselfelt, T., Nordenström, M., Hamedi, M. & Wågberg, L. (2019). Ion-induced assemblies of highly anisotropic nanoparticles are governed by ion-ion correlation and specific ion effects. Nanoscale, 11(8), 3514-3520.
[12]
Engström, J., Benselfelt, T., Wågberg, L., D'Agosto, F., Lansalot, M., Carlmark, A. & Malmström, E. (2019). Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state. Nanoscale.
[13]
Erlandsson, J., Francon, H., Marais, A., Granberg, H. & Wågberg, L. (2019). Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils. Biomacromolecules, 20(2), 728-737.
[14]
Kaldéus, T., Nordenström, M., Erlandsson, J., Wågberg, L. & Malmström, E. (2019). Redispersibility properties of dried cellulose nanofibrils - influence on structure and mechanical properties. .
[15]
Qin, S., Ghanadpour, M., Lazar, S., Köklükaya, O., Gerringer, J., Song, Y. ... Grunlan, J. C. (2019). Super Gas Barrier and Fire Resistance of Nanoplatelet/Nanofibril Multilayer Thin Films. Advanced Materials Interfaces, 6(2).
[16]
Mushi, N. E., Nishino, T., Berglund, L. A. & Zhou, Q. (2019). Strong and Tough Chitin Film from alpha-Chitin Nanofibers Prepared by High Pressure Homogenization and Chitosan Addition. ACS Sustainable Chemistry and Engineering, 7(1), 1692-1697.
[17]
Engström, J. (2019). Tailored adhesion of PISA-latexes for cellulose modification and new materials (Doktorsavhandling , KTH Royal Institute of Technology, TRITA-CBH-FOU 2019:7). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241463.
[19]
Ghorbani, M., Svagan, A. J., Grishenkov, D. (2019). Acoustic Response of a Novel Class of Pickering Stabilized Perfluorodroplets. Presenterad vid 24th European symposium on Ultrasound Contrast Imaging.
[20]
Bengtsson, A. (2019). Carbon fibres from lignin-cellulose precursors (Licentiatavhandling , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2019.11). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244756.
[21]
Wahlström, N., Harrysson, H., Undeland, I. & Edlund, U. (2018). A Strategy for the Sequential Recovery of Biomacromolecules from Red Macroalgae Porphyra umbilicalis Kützing. Industrial & Engineering Chemistry Research, 57(1), 42-53.
[22]
Song, L., Wang, W., Barabino, E., Yang, D., Koerstgens, V., Zhang, P. ... Mueller-Buschbaum, P. (2019). Composition Morphology Correlation in PTB7-Th/PC71 BM Blend Films for Organic Solar Cells. ACS Applied Materials and Interfaces, 11(3), 3125-3135.
[23]
Zhang, F., Cong, J., Li, Y., Bergstrand, J., Liu, H., Cai, B. ... Sun, L. (2018). A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy, 53, 405-414.
[24]
Han, T., Sophonrat, N., Tagami, A., Sevastyanova, O., Mellin, P. & Yang, W. (2019). Characterization of lignin at pre-pyrolysis temperature to investigate its melting problem. Fuel, 235, 1061-1069.
[25]
Han, T., Sophonrat, N., Tagami, A., Sevastyanova, O., Mellin, P. & Yang, W. (2019). Characterization of lignin at pre-pyrolysis temperature to investigate its melting problem. Fuel, 235, 1061-1069.
[26]
Edlund, U., Lagerberg, T. & Alander, E. (2019). Admicellar Polymerization Coating of CNF Enhances Integration in Degradable Nanocomposites. Biomacromolecules, 20(2), 684-692.
[27]
Kaldéus, T., Telaretti Leggieri, M. R., Cobo Sanchez, C. & Malmström, E. (2019). All-aqueous SI-ARGET ATRP from cellulose nanofibrils using hydrophilic and hydrophobic monomers. .
[28]
Yang, G., Nilsson, F., Schubert, D. W. (2019). Universal and anisotropic simulation platform for the study of electrical properties of conductive polymer composites. I AIP Conference Proceedings. American Institute of Physics (AIP).
[29]
Ghaani, M., Pucillo, F., Olsson, R. T., Scampicchio, M. & Farris, S. (2018). A bionanocomposite- modified glassy carbon electrode for the determination of 4,4 0-methylene diphenyl diamine. Analytical Methods, 10(34).
[30]
Kubyshkina, E. & Unge, M. (2019). Impact of interfacial structure on the charge dynamics in nanocomposite dielectrics. Journal of Applied Physics, 125(4).
[31]
Meister, S., Hendrikse, N. & Löfblom, J. (2019). Directed evolution of the 3C protease from coxsackievirus using a novel fluorescence-assisted intracellular method. Biological chemistry (Print), 400(3), 405-415.
[32]
Kaldéus, T., Träger, A., Berglund, L., Malmström, E. & Lo Re, G. (2019). Molecular engineering of cellulose-PCL bio-nanocomposite interface by reactive amphiphilic copolymer nanoparticles. .
[33]
Huang, T. (2019). Betulin-modified cellulosic textile fibers with improved water repellency, hydrophobicity and antibacterial properties (Licentiatavhandling , KTH Royal Institute of Technology, TRITA-CBH-FOU 2019:14). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243638.
[34]
Albertsson, A.-C. (2019). Celebrating 20 years of Biomacromolecules!. Biomacromolecules, 20(2), 767-768.
[35]
Feng, N., Guo, L., Ren, H., Xie, Y., Jiang, Z., Ek, M. & Zhai, H. (2019). Changes in chemical structures of wheat straw auto-hydrolysis lignin by 3-hydroxyanthranilic acid as a laccase mediator. International Journal of Biological Macromolecules, 122, 210-215.
[36]
Kaldéus, T. (2019). Surface modification approaches of cellulose nanofibrils and their effect on dispersibility (Doktorsavhandling , KTH Royal Institute of Technology, Stockholm, TRITA-CBH-FOU 2019:12). Hämtad från http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244070.
[37]
Huang, T., Chen, C., Li, D. & Ek, M. (2019). Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose. Cellulose (London).
[38]
de Carvalho, D. M., Moser, C., Lindström, M. & Sevastyanova, O. (2019). Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties. Industrial crops and products (Print), 127, 203-211.
[39]
Jara, R., Lawoko, M. & van Heiningen, A. (2019). Intrinsic dissolution kinetics and topochemistry of xylan, mannan, and lignin during auto-hydrolysis of red maple wood meal. Canadian Journal of Chemical Engineering, 97(3), 649-661.
[40]
Goliszek, M., Podkoscielna, B., Sevastyanova, O., Fila, K., Chabros, A. & Paczkowski, P. (2019). Investigation of accelerated aging of lignin-containing polymer materials. International Journal of Biological Macromolecules, 123, 910-922.
[41]
Koo, J. M., Kim, H., Lee, M., Park, S.-A., Jeon, H., Shin, S.-H. ... Park, J. (2019). Nonstop Monomer-to-Aramid Nanofiber Synthesis with Remarkable Reinforcement Ability. Macromolecules, 52(3), 923-934.
[42]
Svärd, A., Moriana, R., Brannvall, E. & Edlund, U. (2019). Rapeseed Straw Biorefinery Process. ACS Sustainable Chemistry and Engineering, 7(1), 790-801.
[43]
Moser, C., Henriksson, G. & Lindström, M. (2019). Structural aspects on the manufacturing of cellulose nanofibers from wood pulp fibers. BioResources, 14(1), 2269-2276.
[44]
Petre, D.-G., Kucko, N. W., Abbadessa, A., Vermonden, T., Polini, A. & Leeuwenburgh, S. C. G. (2019). Surface functionalization of polylactic acid fibers with alendronate groups does not improve the mechanical properties of fiber-reinforced calcium phosphate cements. Journal of The Mechanical Behavior of Biomedical Materials, 90, 472-483.
[45]
Giummarella, N., Pu, Y., Ragauskas, A. J. & Lawoko, M. (2018). A Critical Review on the Analysis of Lignin Carbohydrate Bonds. Green Chemistry.
[46]
Antonio, C. (2019). Advances in the use of protein-based materials: towards sustainable naturally sourced absorbent materials. American Chemical Society Symposium Series (ACS), 7(5).
[48]
Percec, S. & Albertsson, A.-C. (2019). Rational Design of Multifunctional Renewable-Resourced Materials. Biomacromolecules, 20(2), 569-572.
[50]
Hajian, A., Wang, Z., Berglund, Lars. A. & Hamedi, M. M. (2019). Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns. Advanced Electronic Materials, 5(3).
Innehållsansvarig:Kenneth Carlsson
Tillhör: Institutionen för fiber- och polymerteknologi
Senast ändrad: 2018-02-27