Till KTH:s startsida Till KTH:s startsida

Visa version

Version skapad av Hedvig Kjellström 2014-03-13 21:30

Visa < föregående | nästa >
Jämför < föregående | nästa >

Schedule and course plan

Period 3

Where and When Activity Reading Examination
February 4
13.15-15.00
B1
Lecture 1: Introduction, boolean retrieval, course practicalities
Hedvig Kjellström, Johan Boye
Manning Chapter 1, 2
February 7
10.15-12.00
B1
Lecture 2: Term vocabulary, dictionaries and tolerant retrieval
Johan Boye
Manning Chapter 2, 3
February 11
13.15-15.00
B1
Lecture 3: Evaluation of search engines
Jussi Karlgren
Manning Chapter 8
February 18
13.00-19.00
Orange
Computer hall session

Oral examination of Assignment 1 in front of computer
February 21
10.15-12.00
V1 (note)
Lecture 4: Scoring, weighting, vector space model
Hedvig Kjellström
Manning Chapter 6, 7
March 4
13.15-15.00
B1
Lecture 5: Retrieval of documents with hyperlinks
Johan Boye, Hedvig Kjellström
Manning Chapter 21, Avrachenkov Sections 1-2
March 18
13.15-15.00
B1
Lecture 6: Evaluation II
Jussi Karlgren
Manning Chapter 9, Robertson
March 18
15.00-19.00
Gul
Computer hall session Oral examination of Assignment 2 in front of computer
March 21
10.15-12.00
B1
Lecture 8: Some useful additions to a search engine, Random Indexing
Viggo Kann
Sahlgren
March 25
13.15-15.00
B1

Lecture 7: Probabilistic information retrieval, language models
Hedvig Kjellström

Manning Chapter 11, 12

Period 4

Where and When Activity Reading Examination
April 1
15.00-19.00
Orange
Computer hall session Oral examination of Assignment 3 in front of computer
April 8
13.15-15.00
B1

Lecture 9: Guest lectures

Anders Friberg, KTH                                                                                                  TITLE Abstract

Hercules Dalianis, SU                                                                                             Clinical text retrieval - some methods and some applications                       Electronic patient records contain a waste source of information, both in form of structured information as diagnosis codes, drug codes, lab values, time stamps, etc and unstructured in form of free text. Methods - both rule based and machine learning based for retrieving this information is presented. Applications as diagnosis codes assignment, hospital acquired infection detection and adverse drug event detection will be discussed.

April 15
13.15-15.00
B1

Lecture 10: Guest lectures

Simon Stenström and Martin Nycander, Findwise                                               Search solutions from the Trenches                                                                            The presentation will describe the difference between a search index and a search solution and the process of building a search solution. We will show real world examples that explains some of the problems that we encounter when working with different parts of search solutions. We will discuss source data, what you should index, how you create a real search query and what you can create from a backing search engine.

Magnus Rosell, FOI                                                                                                   TITLE Abstract

April 22
13.15-15.00
B1

Lecture 11: Guest lecture                                                          

Filip Radlinski, Microsoft Research Cambridge                                                     TITLE Abstract

April 29
13.15-15.00
B1
Lecture 12: Guest lecture
May 16
09.00-13.00
Fantum, Lindstedtsv 24, floor 5
Project presentations Written report hand-in
Oral presentation in front of poster